Кто знает формулу воды еще со времен школьной поры? Конечно же, все. Вероятно, что из всего курса химии у многих, кто потом не изучает ее специализированно, только и остается знание того, что обозначает формула H2O. Но сейчас мы максимально подробно и глубоко постараемся разобраться, что такое вода? Какие ее главные свойства и почему именно без нее жизнь на планете Земля невозможна.
- Вода как вещество
- Свойства воды
- Вода, как проводник электроэнергии
- Измерение электропроводности воды
- Сименс
- Теплопроводность воды
- Плотность воды
- Что такое окислительно-восстановительные свойства воды
- С чем вода способна реагировать
- Есть ли вода где-либо еще, кроме Земли?
- Как используют тепло- и электропроводность воды в практических целях
- Заключение
- Плотность воды в зависимости от температуры
- Физические свойства воды при температуре от 0 до 100°С
- Теплофизические свойства воды на линии насыщения (100…370°С)
- Теплопроводность воды в зависимости от температуры при атмосферном давлении
- Теплопроводность воды в зависимости от температуры и давления
- Теплопроводность, это …
- Справочник технического переводчика
- Толковый словарь Ушакова
- Большой Энциклопедический словарь
- Большой Энциклопедический словарь. 2000
- Теплопроводность воды
Вода как вещество
Молекула воды, как мы знаем, состоит из одного атома кислорода и двух атомов водорода. Ее формула записывается так: H2O. Данное вещество может иметь три состояния: твердое — в виде льда, газообразное — в виде пара, и жидкое — как субстанция без цвета, вкуса и запаха. Кстати, это единственное вещество на планете, которое может существовать во всех трех состояниях одновременно в естественных условиях. Например: на полюсах Земли — лед, в океанах — вода, а испарения под солнечными лучами — это пар. В этом смысле вода аномальна.
Еще вода — это самое распространенное вещество на нашей планете. Она покрывает поверхность планеты Земля почти на семьдесят процентов — это и океаны, и многочисленные реки с озерами, и ледники. Большая часть воды на планете соленая. Она непригодна для питья и для ведения сельского хозяйства. Пресная вода составляет всего два с половиной процента от всего количества воды на планете.
Вода — это очень сильный и качественный растворитель. Благодаря этому химические реакции в воде проходят с огромной скоростью. Это же ее свойство влияет на обмен веществ в человеческом организме. Общеизвестный факт, что тело взрослого человека на семьдесят процентов состоит из воды. У ребенка этот процент еще выше. К старости этот показатель падает с семидесяти до шестидесяти процентов. Кстати, эта особенность воды наглядно демонстрирует, что основой жизни человека есть именно она. Чем воды в организме больше — тем он здоровее, активнее и моложе. Потому ученые и медики всех стран неустанно твердят, что пить нужно много. Именно воду в чистом виде, а не заменители в виде чая, кофе или других напитков.
Вода формирует климат на планете, и это не преувеличение. Теплые течения в океане обогревают целые континенты. Это происходит за счет того, что вода поглощает очень много солнечного тепла, а потом отдает его, когда начинает остывать. Так она регулирует температуру на планете. Многие ученые говорят, что Земля давно бы остыла и стала камнем, если бы не наличие такого количества воды на зеленой планете.
Свойства воды
У воды есть много очень интересных свойств.
Например, вода — это самое подвижное вещество после воздуха. Из школьного курса многие, наверняка, помнят такое понятие, как круговорот воды в природе. Например: ручеек испаряется под воздействием прямых солнечных лучей, превращается в водяной пар. Далее, этот пар посредством ветра, переносится куда-либо, собирается в облака, а то и в грозовые тучи и выпадает в горах в виде снега, града или дождя. Далее, с гор ручеек вновь сбегает вниз, частично испаряясь. И так — по кругу — цикл повторяется миллионы раз.
Также у воды очень высокая теплоемкость. Именно из-за этого водоемы, тем более океаны, очень медленно остывают при переходе от теплого сезона или времени суток к холодному. И наоборот, при повышении температуры воздуха вода очень медленно нагревается. За счет этого, как и упоминалось выше, вода стабилизирует температуру воздуха на всей нашей планете.
После ртути вода обладает самым высоким значением поверхностного натяжения. Нельзя не заметить, что случайно пролитая на ровной поверхности капля иногда становится внушительным пятнышком. В этом проявляется тягучесть воды. Еще одно свойство проявляется у нее при понижении температуры до четырех градусов. Как только вода остывает до этой отметки, она становится легче. Поэтому лед всегда плавает на поверхности воды и застывает корочкой, покрывая собой реки и озера. Благодаря этому в водоемах, замерзающих зимой, не вымерзает рыба.
Вода, как проводник электроэнергии
Вначале стоит узнать о том, что такое электропроводность (воды в том числе). Электропроводность — это способность какого-либо вещества проводить через себя электрический ток. Соответственно, электропроводность воды — это возможность воды проводить ток. Эта способность непосредственно зависит от количества солей и иных примесей в жидкости. Например, электропроводность дистиллированной воды почти сведена к минимуму из-за того, что такая вода очищена от различных добавок, которые так нужны для хорошей электропроводности. Отличный проводник тока — это вода морская, где концентрация солей очень велика. Еще электропроводность зависит от температуры воды. Чем значение температуры выше — тем большая электропроводность у воды. Эта закономерность выявлена благодаря множественным опытам ученых-физиков.
Измерение электропроводности воды
Есть такой термин — кондуктометрия. Так называют один из методов электрохимического анализа, основанного на электрической проводимости растворов. Применяют этот метод для определения концентрации в растворах солей или кислот, а также для контроля состава некоторых промышленных растворов. Вода обладает амфотерными свойствами. То есть в зависимости от условий она способна проявлять как кислотные, так и основные свойства — выступать и в роли кислоты, и в роли основания.
Прибор, который используют для этого анализа, имеет очень сходное название — кондуктометр. С помощью кондуктометра измеряется электропроводность электролитов, находящихся в растворе, анализ которого ведется. Пожалуй, стоит объяснить еще один термин — электролит. Это вещество, которое при растворении или плавлении распадается на ионы, за счет чего впоследствии проводится электрический ток. Ион — это электрически заряженная частица. Собственно, кондуктометр, взяв за основу определенные единицы электропроводности воды, определяет ее удельную электропроводность. То есть он определяет электропроводность конкретного объема воды, взятого за начальную единицу.
Еще до начала семидесятых годов прошлого столетия для обозначения проводимости электричества использовали единицу измерения «мо», это была производная от другой величины — Ома, являющейся основной единицей сопротивления. Электропроводимость — это величина, обратно пропорциональная сопротивлению. Сейчас же она измеряется в Сименсах. Получила свое название данная величина в честь ученого-физика из Германии — Вернера фон Сименса.
Сименс
Сименс (обозначаться может как См, так и S) — это величина, обратная Ому, являющаяся единицей измерения электрической проводимости. Один См равен электрической проводимости любого проводника, сопротивление которого равно 1 Ом. Выражается Сименс через формулу:
- 1 См = 1 : Ом = А : В = кг−1·м−2·с³А², где
А — ампер,
В — вольт.
Теплопроводность воды
Теперь поговорим о том, что такое теплопроводность. Теплопроводность — это способность какого-либо вещества переносить тепловую энергию. Суть явления заключается в том, что кинетическая энергия атомов и молекул, что определяют температуру данного тела или вещества, передается другому телу или веществу при их взаимодействии. Иначе говоря, теплопроводность — это теплообмен между телами, веществами, а также между телом и веществом.
Теплопроводность у воды также очень высока. Люди ежедневно используют это свойство воды, сами того не замечая. Например, наливая холодную воду в тару и остужая в ней напитки или продукты. Холодная вода забирает тепло у бутылки, контейнера, взамен отдавая холод, возможна и обратная реакция.
Теперь это же явление легко можно представить в масштабе планеты. Океан нагревается в течение лета, а потом — с наступлением холодов, медленно остывает и отдает свое тепло воздуху, тем самым обогревая материки. Остыв за зиму, океан начинает очень медленно нагреваться по сравнению с землей и отдает свою прохладу изнывающим от летнего солнца материкам.
Плотность воды
Выше рассказывалось о том, что рыба живет зимой в водоеме благодаря тому, что вода застывает корочкой по всей их поверхности. Мы знаем, что в лед вода начинает превращаться при температуре в ноль градусов. Из-за того, что плотность воды больше, чем плотность льда, лед всплывает и застывает по поверхности.
Что такое окислительно-восстановительные свойства воды
Также вода при разных условиях способна быть и окислителем, и восстановителем. То есть вода, отдавая свои электроны, заряжается положительно и окисляется. Или же приобретает электроны и заряжается отрицательно, значит, восстанавливается. В первом случае вода окисляется и называется мертвой. Она обладает очень мощными бактерицидными свойствами, только вот пить ее не надо. Во втором случае вода живая. Она бодрит, стимулирует организм на восстановление, несет энергию клеткам. Разница между этими двумя свойствами воды выражается в термине «окислительно-восстановительный потенциал».
С чем вода способна реагировать
Вода способна реагировать почти со всеми веществами, которые существуют на Земле. Единственное, что для возникновения этих реакций нужно обеспечить подходящую температуру и микроклимат.
Например, при комнатной температуре вода отлично реагирует с такими металлами, как натрий, калий, барий — их называют активными. С галогенами — это фтор, хлор. При нагревании вода отлично реагирует с железом, магнием, углем, метаном.
При помощи различных катализаторов вода вступает в реакцию с амидами, эфирами карбоновых кислот. Катализатор — это вещество, словно бы подталкивающее компоненты к взаимной реакции, ускоряющее ее.
Есть ли вода где-либо еще, кроме Земли?
Пока ни на одной планете Солнечной системы, кроме Земли, воды не обнаружено. Да, предполагают о ее присутствии на спутниках таких планет-гигантов, как Юпитер, Сатурн, Нептун и Уран, но пока точных данных у ученых нет. Существует еще одна гипотеза, пока не проверенная окончательно, о подземных водах на планете Марс и на спутнике Земли — Луне. Касательно Марса вообще выдвинуто ряд теорий о том, что когда-то на этой планете был океан, и его возможная модель даже проектировалась учеными.
Вне Солнечной системы существует множество больших и малых планет, где, по догадкам ученых, может быть вода. Но пока нет ни малейшей возможности убедиться в этом наверняка.
Как используют тепло- и электропроводность воды в практических целях
Ввиду того, что вода обладает высоким значением теплоемкости, ее используют в теплотрассах в качестве теплоносителя. Она обеспечивает передачу тепла от производителя к потребителю. Как отличный теплоноситель воду используют и многие атомные электростанции.
В медицине лед используют для охлаждения, а пар — для дезинфекции. Так же лед используют в системе общественного питания.
Во многих ядерных реакторах воду используют как замедлитель, для успешного протекания цепной ядерной реакции.
Воду под давлением используют для раскалывания, проламывания и даже для резки горных пород. Это активно используется при строительстве туннелей, подземных помещений, складов, метро.
Заключение
Из статьи следует, что вода по своим свойствам и функциям — самое незаменимое и поразительное вещество на Земле. Зависит ли жизнь человека или любого другого живого существа на Земле от воды? Безусловно, да. Способствует ли это вещество ведению научной деятельности человеком? Да. Обладает ли вода электропроводностью, теплопроводностью и иными полезными свойствами? Ответ тоже «да». Иное дело, что воды на Земле, а тем более воды чистой, все меньше и меньше. И наша задача — сохранить и обезопасить ее (а значит, и всех нас) от исчезновения.
Рассмотрены физические свойства воды: плотность воды, теплопроводность, удельная теплоемкость, вязкость, число Прандтля и другие. Свойства представлены при различных температурах в виде таблиц.
Плотность воды в зависимости от температуры
Принято считать, что плотность воды равна 1000 кг/м3, 1000 г/л или 1 г/мл, но часто ли мы задумываемся при какой температуре получены эти данные?
Максимальная плотность воды достигается при температуре от 3,8 до 4,2°С. В этих условиях точное значение плотности воды составляет величину 999,972 кг/м3. Такая температурная зависимость плотности характерна только для воды. Другие распространенные жидкости не имеют максимума плотности на этой кривой — их плотность равномерно снижается по мере роста температуры.
Вода существует как отдельная жидкость при температуре от 0 до 374,12°С — это ее критическая температура, при которой исчезает граница раздела между жидкостью и водяным паром. Какова плотность воды (или ее удельная масса) при этих температурах можно узнать в таблице ниже. Данные о плотности воды представлены в размерности кг/м3 и г/мл.
В таблице приведены значения плотности воды в кг/м3 и в г/мл (г/см3), допускается интерполяция данных. Например, плотность воды при температуре 25°С можно определить, как среднее значение от величин ее плотности при 24 и 26°С. Таким образом, при температуре 25°С вода имеет плотность 997,1 кг/м3 или 0,9971 г/мл.
Значения в таблице относятся к пресной или дистиллированной воде. Если рассматривать, например, морскую или соленую воду, то ее плотность будет выше — плотность морской воды равна 1030 кг/м3. Плотность соленой воды и водных растворов солей можно узнать в этой таблице.
0 | 999,8 | 0,9998 | 62 | 982,1 | 0,9821 | 200 | 864,7 | 0,8647 |
0,1 | 999,8 | 0,9998 | 64 | 981,1 | 0,9811 | 210 | 852,8 | 0,8528 |
2 | 999,9 | 0,9999 | 66 | 980 | 0,98 | 220 | 840,3 | 0,8403 |
4 | 1000 | 1 | 68 | 978,9 | 0,9789 | 230 | 827,3 | 0,8273 |
6 | 999,9 | 0,9999 | 70 | 977,8 | 0,9778 | 240 | 813,6 | 0,8136 |
8 | 999,9 | 0,9999 | 72 | 976,6 | 0,9766 | 250 | 799,2 | 0,7992 |
10 | 999,7 | 0,9997 | 74 | 975,4 | 0,9754 | 260 | 783,9 | 0,7839 |
12 | 999,5 | 0,9995 | 76 | 974,2 | 0,9742 | 270 | 767,8 | 0,7678 |
14 | 999,2 | 0,9992 | 78 | 973 | 0,973 | 280 | 750,5 | 0,7505 |
16 | 999 | 0,999 | 80 | 971,8 | 0,9718 | 290 | 732,1 | 0,7321 |
18 | 998,6 | 0,9986 | 82 | 970,5 | 0,9705 | 300 | 712,2 | 0,7122 |
20 | 998,2 | 0,9982 | 84 | 969,3 | 0,9693 | 305 | 701,7 | 0,7017 |
22 | 997,8 | 0,9978 | 86 | 967,8 | 0,9678 | 310 | 690,6 | 0,6906 |
24 | 997,3 | 0,9973 | 88 | 966,6 | 0,9666 | 315 | 679,1 | 0,6791 |
26 | 996,8 | 0,9968 | 90 | 965,3 | 0,9653 | 320 | 666,9 | 0,6669 |
28 | 996,2 | 0,9962 | 92 | 963,9 | 0,9639 | 325 | 654,1 | 0,6541 |
30 | 995,7 | 0,9957 | 94 | 962,6 | 0,9626 | 330 | 640,5 | 0,6405 |
32 | 995 | 0,995 | 96 | 961,2 | 0,9612 | 335 | 625,9 | 0,6259 |
34 | 994,4 | 0,9944 | 98 | 959,8 | 0,9598 | 340 | 610,1 | 0,6101 |
36 | 993,7 | 0,9937 | 100 | 958,4 | 0,9584 | 345 | 593,2 | 0,5932 |
38 | 993 | 0,993 | 105 | 954,5 | 0,9545 | 350 | 574,5 | 0,5745 |
40 | 992,2 | 0,9922 | 110 | 950,7 | 0,9507 | 355 | 553,3 | 0,5533 |
42 | 991,4 | 0,9914 | 115 | 946,8 | 0,9468 | 360 | 528,3 | 0,5283 |
44 | 990,6 | 0,9906 | 120 | 942,9 | 0,9429 | 362 | 516,6 | 0,5166 |
46 | 989,8 | 0,9898 | 125 | 938,8 | 0,9388 | 364 | 503,5 | 0,5035 |
48 | 988,9 | 0,9889 | 130 | 934,6 | 0,9346 | 366 | 488,5 | 0,4885 |
50 | 988 | 0,988 | 140 | 925,8 | 0,9258 | 368 | 470,6 | 0,4706 |
52 | 987,1 | 0,9871 | 150 | 916,8 | 0,9168 | 370 | 448,4 | 0,4484 |
54 | 986,2 | 0,9862 | 160 | 907,3 | 0,9073 | 371 | 435,2 | 0,4352 |
56 | 985,2 | 0,9852 | 170 | 897,3 | 0,8973 | 372 | 418,1 | 0,4181 |
58 | 984,2 | 0,9842 | 180 | 886,9 | 0,8869 | 373 | 396,2 | 0,3962 |
60 | 983,2 | 0,9832 | 190 | 876 | 0,876 | 374,12 | 317,8 | 0,3178 |
Следует отметить, что при увеличении температуры воды (выше 4°С) ее плотность уменьшается. Например, по данным таблицы, плотность воды при температуре 20°С равна 998,2 кг/м3, а при ее нагревании до 90°С, величина плотности снижается до значения 965,3 кг/м3. Удельная масса воды при нормальных условиях значительно отличается от ее плотности при высоких температурах. Средняя плотность воды, находящейся при температуре 200…370°С намного меньше ее плотности в обычном температурном диапазоне от 0 до 100°С.
Смена агрегатного состояния воды приводит к существенному изменению ее плотности. Так, величина плотности льда при 0°С имеет значение 916…920 кг/м3, а плотность водяного пара составляет величину в сотые доли килограмма на кубический метр. Следует отметить, что значение плотности воды почти в 1000 раз больше плотности воздуха при нормальных условиях.
Кроме того, вы также можете ознакомиться с таблицей плотности веществ и материалов.
Физические свойства воды при температуре от 0 до 100°С
В таблице представлены следующие физические свойства воды: плотность воды ρ, удельная энтальпия h, удельная теплоемкость Cp, теплопроводность воды λ, температуропроводность воды а, вязкость динамическая μ, вязкость кинематическая ν, коэффициент объемного теплового расширения β, коэффициент поверхностного натяжения σ, число Прандтля Pr. Физические свойства воды приведены в таблице при нормальном атмосферном давлении в интервале от 0 до 100°С.
Физические свойства воды существенно зависят от ее температуры. Наиболее сильно эта зависимость выражена у таких свойств, как удельная энтальпия и динамическая вязкость. При нагревании значение энтальпии воды значительно увеличивается, а вязкость существенно снижается. Другие физические свойства воды, например, коэффициент поверхностного натяжения, число Прандтля и плотность уменьшаются при росте ее температуры. К примеру, плотность воды при нормальных условиях (20°С) имеет значение 998,2 кг/м3, а при температуре кипения снижается до 958,4 кг/м3.
Такое свойство воды, как теплопроводность (или правильнее — коэффициент теплопроводности) при нагревании имеет тенденцию к увеличению. Теплопроводность воды при температуре кипения 100°С достигает значения 0,683 Вт/(м·град). Температуропроводность H2O также увеличивается при росте ее температуры.
Следует отметить нелинейное поведение кривой зависимости удельной теплоемкости этой жидкости от температуры. Ее значение снижается в интервале от 0 до 40°С, затем происходит постепенный рост теплоемкости до величины 4220 Дж/(кг·град) при 100°С.
ρ, кг/м3 | 999,8 | 999,7 | 998,2 | 995,7 | 992,2 | 988 | 983,2 | 977,8 | 971,8 | 965,3 | 958,4 |
h, кДж/кг | 0 | 42,04 | 83,91 | 125,7 | 167,5 | 209,3 | 251,1 | 293 | 335 | 377 | 419,1 |
Cp, Дж/(кг·град) | 4217 | 4191 | 4183 | 4174 | 4174 | 4181 | 4182 | 4187 | 4195 | 4208 | 4220 |
λ, Вт/(м·град) | 0,569 | 0,574 | 0,599 | 0,618 | 0,635 | 0,648 | 0,659 | 0,668 | 0,674 | 0,68 | 0,683 |
a·108, м2/с | 13,2 | 13,7 | 14,3 | 14,9 | 15,3 | 15,7 | 16 | 16,3 | 16,6 | 16,8 | 16,9 |
μ·106, Па·с | 1788 | 1306 | 1004 | 801,5 | 653,3 | 549,4 | 469,9 | 406,1 | 355,1 | 314,9 | 282,5 |
ν·106, м2/с | 1,789 | 1,306 | 1,006 | 0,805 | 0,659 | 0,556 | 0,478 | 0,415 | 0,365 | 0,326 | 0,295 |
β·104, град-1 | -0,63 | 0,7 | 1,82 | 3,21 | 3,87 | 4,49 | 5,11 | 5,7 | 6,32 | 6,95 | 7,52 |
σ·104, Н/м | 756,4 | 741,6 | 726,9 | 712,2 | 696,5 | 676,9 | 662,2 | 643,5 | 625,9 | 607,2 | 588,6 |
Pr | 13,5 | 9,52 | 7,02 | 5,42 | 4,31 | 3,54 | 2,93 | 2,55 | 2,21 | 1,95 | 1,75 |
Примечание: Температуропроводность в таблице дана в степени 108 , вязкость в степени 106 и т. д. для других свойств. Размерность физических свойств воды выражена в единицах СИ.
Теплофизические свойства воды на линии насыщения (100…370°С)
В таблице представлены теплофизические свойства воды H2O на линии насыщения в зависимости от температуры (в диапазоне от 100 до 370°С). Каждому значению температуры, при которой вода находится в состоянии насыщения, соответствует давление ее насыщенного пара. При этих параметрах жидкость и ее пар находятся в состоянии насыщения или термодинамического равновесия.
В таблице даны следующие теплофизические свойства воды в состоянии насыщенной жидкости:
- давление насыщенного пара при указанной температуре p, Па;
- плотность воды ρ, кг/м3;
- удельная энтальпия воды h, кДж/кг;
- удельная (массовая) теплоемкость Cp, кДж/(кг·град);
- теплопроводность λ, Вт/(м·град);
- температуропроводность a, м2/с;
- вязкость динамическая μ, Па·с;
- вязкость кинематическая ν, м2/с;
- коэффициент теплового объемного расширения β, К-1;
- коэффициент поверхностного натяжения σ, Н/м;
- число Прандтля Pr.
Свойства воды на линии насыщения имеют зависимость от температуры. Ее влияние особенно сказывается на вязкости воды — динамическая вязкость H2O при повышении температуры значительно снижается. Если, при температуре 100°С значение этого свойства воды в состоянии насыщения равно 282,5·10-6 Па·с, то при температуре, равной например 370°С, динамическая вязкость снижается до величины 282,5·10-6 Па·с.
Другие свойства воды такие, как плотность, теплопроводность, удельная теплоемкость, температуропроводность при росте ее температуры имеют тенденцию к снижению своих значений. Например, плотность воды уменьшается с 958,4 до 450,5 кг/м3 при нагревании со 100 до 370°С.
Теплопроводность воды в состоянии насыщения при увеличении температуры также снижается (в отличие от нормальных условий и температуре до 100°С, при которых имеет место ее рост в процессе нагрева). Снижение теплопроводности связано с увеличением как температуры, так и давления насыщенной жидкости.
Следует отметить, что удельная энтальпия воды в зависимости от температуры значительно увеличивается при нагревании, как до температуры кипения, так и выше.
Теплопроводность воды в зависимости от температуры при атмосферном давлении
В таблице представлены значения теплопроводности воды в жидком состоянии при нормальном атмосферном давлении. Теплопроводность воды указана в зависимости от температуры в интервале от 0 до 100°С.
Вода при нагревании становиться более теплопроводной — ее коэффициент теплопроводности увеличивается. Например, при 10°С вода имеет теплопроводность 0,574 Вт/(м·град), а при росте температуры до 95°С величина теплопроводности воды увеличивается до значения 0,682 Вт/(м·град).
0,569 | 0,572 | 0,574 | 0,587 | 0,599 | 0,609 | 0,618 | 0,627 | 0,635 | 0,648 |
0,654 | 0,659 | 0,664 | 0,668 | 0,671 | 0,674 | 0,677 | 0,68 | 0,682 | 0,683 |
Теплопроводность воды в зависимости от температуры и давления
В таблице приведены значения теплопроводности воды и водяного пара при температурах от 0 до 700°С и давлении от 1 до 500 атм.
Как известно, вода при атмосферном давлении закипает и переходит в пар при температуре 100°С. Коэффициент теплопроводности воды в этих условиях равен 0,683 Вт/(м·град). При увеличении давления растет и температура кипения воды (закон Клапейрона — Клаузиуса). По данным таблицы видно, при давлении в 100 раз выше атмосферного (100 бар) вода находится в виде пара при температуре от 310°С и имеет теплопроводность 0,523 Вт/(м·град).
Таким образом, следует отметить, что изменение давления влияет как на температуру кипения воды, так и на величину ее теплопроводности. Высокая теплопроводность воды достигается за счет роста давления — при повышении давления коэффициент теплопроводности воды увеличивается. Например, при давлении 1 бар и температуре 20°С вода имеет теплопроводность, равную 0,603 Вт/(м·град). При росте давления до 500 бар теплопроводность воды становится равной 0,64 Вт/(м·град) при этой же температуре.
Примечание: Черта под значениями в таблице означает фазовый переход воды в пар, то есть цифры под чертой относятся к пару, а выше ее — к воде. Теплопроводность в таблице указана в степени 103. Не забудьте разделить на 1000! Размерность теплопроводности воды в таблице Вт/(м·град).
- Варгафтик Н.Б. Справочник по теплофизическим свойствам газов и жидкостей.
- Михеев М.А., Михеева И.М. Основы теплопередачи.
- Чубик И.А., Маслов А.М. Справочник по теплофизическим характеристикам пищевых продуктов и полуфабрикатов. М.: «Пищевая промышленность», 1970 — 184 с.
- ГСССД 2-77 Вода. Плотность при атмосферном давлении и температурах от 0 до 100°С. М.: Издательство стандартов, 1978 — 6 с.
Теплопроводность воды – свойство, которым мы все, того не подозревая, очень часто пользуемся в быту.
Кратко про это свойство мы уже писали в нашей статье ХИМИЧЕСКИЕ И ФИЗИЧЕСКИЕ СВОЙСТВА ВОДЫ В ЖИДКОМ СОСТОЯНИИ ( читать → ) , в данном же материале дадим более развернутое определение.
Вначале рассмотрим значение термина Теплопроводность в общем.
Теплопроводность, это …
Справочник технического переводчика
Теплопроводность — теплообмен, при котором перенос теплоты в неравномерно нагретой среде имеет атомно-молекулярный характер
Теплопроводность — способность материала пропускать тепловой поток
Справочник технического переводчика
Толковый словарь Ушакова
Теплопроводность, теплопроводности, мн. нет, жен. (физ.) — свойство тел распространять тепло от более нагретых частей к менее нагретым.
Толковый словарь Ушакова. Д.Н. Ушаков. 1935-1940
Большой Энциклопедический словарь
Теплопроводность — перенос энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия составляющих его частиц. Приводит к выравниванию температуры тела. Обычно количество переносимой энергии, определяемое как плотность теплового потока, пропорционально градиенту температуры (закон Фурье). Коэффициент пропорциональности называют коэффициентом теплопроводности.
Большой Энциклопедический словарь. 2000
Теплопроводность воды
Для более объемного понимания общей картины отметим несколько фактов:
- Теплопроводность воздуха приблизительно в 28 раз меньше теплопроводности воды;
- У масла теплопроводность ориентировочно в 5 раз меньше чем у воды;
- При повышении давления теплопроводность повышается;
- В большинстве случаях, при повышении температуры, теплопроводность слабо концентрированных растворов солей, щелочей и кислот так же растет.
В качестве примера, приведем динамику изменений значений теплопроводности воды в зависимости от температуры, при давлении 1 бар:
0°С – 0,569 Вт/(м•град);
10°С – 0,588 Вт/(м•град);
20°С – 0,603 Вт/(м•град);
30°С – 0,617 Вт/(м•град);
40°С – 0,630 Вт/(м•град);
50°С – 0,643 Вт/(м•град);
60°С – 0,653 Вт/(м•град);
70°С – 0,662 Вт/(м•град);
80°С – 0,669 Вт/(м•град);
90°С – 0,675 Вт/(м•град);
100°С – 0,0245 Вт/(м•град);
110°С – 0,0252 Вт/(м•град);
120°С – 0,026 Вт/(м•град);
130°С – 0,0269 Вт/(м•град);
140°С – 0,0277 Вт/(м•град);
150°С – 0,0286 Вт/(м•град);
160°С – 0,0295 Вт/(м•град);
170°С – 0,0304 Вт/(м•град);
180°С – 0,0313 Вт/(м•град).
Теплопроводность, впрочем, как и все остальные, является весьма важным для всех нас свойством воды. Например мы очень часто, сами того не зная, пользуемся им в быту — используем воду для быстрого охлаждения нагретых предметов, а грелку для аккумулирования тепла и его хранения.