Теплопроводность и теплопередача это одно и тоже

teploprovodnost i teploperedacha eto odno i tozhe 1 Отопление

Новые статьи

  1. «Виды теплопередачи: теплопроводность, конвекция, излучение»

«Виды теплопередачи:
теплопроводность, конвекция, излучение»

Теплопередача – это способ изменения внутренней энергии тела при передаче энергии от одной части тела к другой или от одного тела к другому без совершения работы. Существуют следующие виды теплопередачи: теплопроводность, конвекция и излучение.

Теплопроводность

Теплопроводность – это процесс передачи энергии от одного тел а к другому или от одной части тела к дpугой благодаря тепловому движению частиц. Важно, что при теплопроводности не происходит перемещения вещества, от одного тела к другом у или от одной части телa к другой передается энергия.

Разные вещества обладают разной теплопроводностью. Если на дно пробирки, наполненной водой, положить кусочек льда и верхний её конец поместить над пламенем спиртовки, то через некоторое время вода в верхней части пробирки закипит, а лёд при этом не растает. Следовательно, вода, так же как и все жидкости, обладает плохой теплопроводностью.

Ещё более плохой теплопроводность ю обладают газы. Возьмём пробирку, в которой нет ничего, кроме воздуха, и расположим её над пламенем спиртовки. Палец, помещённый в пробирку, не почувствует тепла. Следовательно, воздух и другие газы обладает плохой теплопроводностью.

Хорошими проводниками теплоты являются металлы, самыми плохими — сильно разреженные газы. Это объясняется особенностями их строения. Молекулы газов находятся друг от друга на расстояниях, больших, чем молекулы твёрдых тел, и значительно реже сталкиваются. Поэтому и передача энергии от одних молекул к другим в газах происходит не столь интенсивно, как в твёрдых телах. Теплопроводность жидкости занимает промежуточное положение между теплопроводностью газов и твёрдых тел.

Конвекция

Как известно, газы и жидкости плохо проводят теплоту. В то же время от батарей парового отопления нагревается воздух. Это происходит благодаря такому виду теплопроводности, как конвекция.

Если вертушку, сделанную из бумаги, поместить над источником тепла, то вертушка начнёт вращаться. Это происходит потому, что нагретые менее плотные слои воздуха под действием выталкивающей силы поднимаются вверх, а более холодные движутся вниз и занимают их место, что и приводит к вращению вертушки.

Конвекция — вид теплопередачи, при котором энергия передаётся слоями жидкости или газа. Конвекция связана с переносом вещества, поэтому она может осуществляться только в жидкостях и газах; в твёрдых телах конвекция не происходит.

Излучение

Третий вид теплопередачи — излучение. Если поднести руку к спирали электроплитки, включённой в сеть, к горящей электрической лампочке, к нагретому утюгу, к батарее отопления и т.п., то можно явно ощутить тепло.

Опыты также показывают, что чёрные тела хорошо поглощают и излучают энергию, а белые или блестящие плохо испускают и плохо поглощают её. Они хорошо энергию отражают. Поэтому понятно, почему летом носят светлую одежду, почему дома на юге предпочитают красить в белый цвет.

Путём излучения энергия передаётся от Солнца к Земле. Поскольку пространство между Солнцем и Землёй представляет собой вакуум (высота атмосферы Земли много меньше расстояния от неё до Солнца), то энергия не может передаваться ни путём конвекции, ни путём теплопроводности. Таким образом, для передачи энергии путём излучения не требуется наличия какой-либо среды, эта теплопередача может осуществляться и в вакууме.

Конспект урока «Виды теплопередачи: теплопроводность, конвекция, излучение».

Следующая тема: «Количество теплоты. Удельная теплоёмкость».

Виды теплопередачи: теплопроводность, конвекция, излучение

Попробуем и для гуманитариев объяснить.

Теплоемкость проще в калориях объяснять, поскольку именно вода была принята за единицу отсчета теплоемкости веществ в системе СГС.
Чтобы нагреть 1 грамм воды на один градус нужна энергия (работа) равная 1 калории. А для нагрева1 грамма подсолнечного масла требуется всего 0,42 калории. При остывании 1 грамма воды на 1 градус выделится та же калория энергии (пойдет на нагрев окружающей среды) . А масло отдаст 0,42 калории. Т. е. емкость по теплу (теплоемкость) у воды почти в два раза больше теплоемкости масла.

Теплообмен общее понятие самопроизвольного необратимого переноса теплоты (точнее, энергии в форме теплоты) между телами или участками внутри тела
Различают три разных механизма распространения теплоты:
— теплообмен за счет теплопроводности ( (металлическая ручка горячей сковородки, которая нагрелась благодаря высокой теплопроводности металла. Деревянная ручка так не нагреется) ,
— конвективный теплообмен ( тепловентилятор вас греет или в парилке потеете) ,
— лучистый теплообмен (на солнышке жаритесь или у костра сидите, а лицо пылает, хотя до огня и солнца далеко) .

Теплопроводность-перенос энергии от более нагретых участков тела к менее нагретым. Характеризуется коэффициентом теплопроводности. Для гуманитариев (да и для технарей думаю полезно будет) так объясняю:
представтье куб вещества с размером стороны 1 метр. Если на противоположных гранях куба создать разность температур, то такой куб будет проводить тепло. Так вот, если разница температур на противоположных гранях куба будет 1 градус, то мощность теплового потока от грани к грани для медного куба будет 390 ватт. Т. е. каждую секунду такой куб будет передавать от грани к грани 390 джоулей энергии. Т. е. коэффициент теплопроводности меди 390 ватт на расстояние 1 метр через квадратный метр площади при перепаде температур 1 градус, или по научному — 390Вт/м*K. (сразу понятно почему в знаменателе получился линейный метр) . Если из алмаза гипотетически куб представить, то за киловатт от грани к грани передаваемая мощность будет (поскольку алмаз лучше всех тепло проводит) . Если из дерева, то всего 0,3 ватта мощность теплового потока будет. Потому деревянные дома такие теплые — не проводят ( в смысле очень плохо проводят) они тепло.

Теплоотдача — это теплообмен на границе раздела двух фаз. Например, поверхность горячей батареи отдает тепло воздуху в комнате. Или горячая вода внутренность батареи греет. Или теплоотдача поверхности горячей воды в кастрюле кухонному воздуху.

Теплопередача это теплообмен между двумя теплоносителями через разделяющую их тврдую стенку. Т. е. включает в себя теплоотдачу от более горячей жидкости к стенке, теплопроводность в стенке, теплоотдачу от стенки к более холодной подвижной среде. На примере батареи характеризуется совокупностью: коэффициента теплоотдачи от жидкости к стенке батареи, потерей тепла при его прохождении через металл батареи (зависит от толщины стенки и ее теплопроводности) и коэффициента теплоотдачи от горячей стенки батареи к воздуху.

теплопроводность и теплопередача это одно и тожеФизика, как наука утверждает, что в природе существуют три вида теплопередачи: теплопроводность, конвекция и лучистый теплообмен. Практически во всех источниках просматривается данная иерархия – на первом месте теплопроводность, на втором – конвекция и на третьем – лучистый теплообмен.

Почему сложилась такая последовательность, очевидно, из истории открытия данных явлений. Если теплопроводность и конвекция были известны древним людям, то электромагнитные волны были предсказаны Максвеллом, а затем открыты Герцем только в конце 19 века (1888 году).

«Теплопередача — это процесс переноса теплоты внутри тела или от одного тела к другому, обусловленный разностью температур».

Теплопередачу в газах и жидкостях еще можно представить как взаимное проникновение молекул и атомов – горячих в более холодную, а холодных в горячую среду. Но как происходит теплопередача в твердых телах?

Я уже частично коснулся проблемы теплопередачи в предыдущей статье «Получение теплоты», когда речь шла о крафоне. Краснофотонное излучение и переизлучение – это и есть, теплопередача в твердых телах. Особенно хорошо это свойство выражено в металлах. Хорошую теплопроводность в металлах физики связывают с присутствием свободных электронов. Но есть один диэлектрик по имени «алмаз», у которого нет свободных, нет слабо связанных электронов, но его теплопроводность зашкаливает.

Теплопроводность алмаза

Какой минерал на Земле, описывая который мы как попугаи повторяем «самый», «самый». Нет, не золото и не платина – это алмаз. Самый твердый, самый дорогой, самый износостойкий, самый блестящий, самый редкий и т.д.

Есть еще одно свойство, связанное с алмазом и словом самый – его теплопроводность. Теплопроводность алмаза при комнатной температуре в 3 — 6 раз выше теплопроводности серебра и меди, самых теплопроводных металлов на Земле. Сколько бы вы не грели алмаз в сжатой ладони, он останется холодным. Если сделать из алмаза чайную ложечку, то вы каждый раз, опуская ее в горячий чай, будете обжигать пальцы.

Как и чем можно объяснить самую высокую теплопроводность алмаза? Чтобы разобраться с этим не простым вопросом, обратимся к теплопроводности металлов.

Металлы, как известно, являются проводниками, причем, чем лучше металл проводит электрический ток, тем он лучше и проводит тепло. Наука связывает данный эффект со свободными электронами, которые под действием разности потенциалов, выстраиваются в цепь и создают прохождение электрического тока.

Возьмем медный стержень длиной несколько сантиметров и будем нагревать один конец. Через некоторое, весьма короткое, время второй конец также будет нагреваться. Физики говорят – стержень обладает теплопроводностью, а свободные, не связанные или слабо связанные электроны, быстро перемещаются и переносят теплоту вдоль стержня.

Медь прекрасный проводник электрического тока. Тогда что происходит с алмазом – он диэлектрик и у него нет свободных электронов-зарядов, а теплопроводность в 5 раз выше, чем у меди.

На мой взгляд, высокая теплопроводность алмаза связана с тремя факторами:

  1. строением кристаллической решетки;
  2. малыми расстояниями между атомами;
  3. плотным электромагнитным эфиром.

В кристаллической решётке алмаза каждый атом углерода жестко связан ковалентными связями с четырьмя другими атомами, размещёнными на одинаковом расстоянии. Эти связи по всем направлениям одинаково прочные. Лишним доказательством того, что у алмаза нет свободных электронов говорит о его очень малом коэффициенте теплового расширения (0,0000008), немного уступая кварцевому стеклу. Поскольку у алмаза не может быть конвекции, и нет свободных электронов, то очевидно, основным видом теплопередачи в алмазе является лучистый теплообмен. Структура кристаллической решетки усиливает этот процесс. Даже незначительная разность тепловых потенциалов с помощью излучения быстро выравнивает их.

Снова вернемся к металлам и еще раз разберемся со словами теплопроводность, конвекция и лучистый теплообмен. Начнем с теплопроводности, что скрывается под этим словом?

Под данным словом кроется некий диффузионный перенос теплоты от одного атома к другому. Т.е. свободные электроны, нагретые на одном конце стержня, через некоторое время должны появиться на другом конце стержня и нагреть его. Но так ли это. Рассудим логически, какой колонии электронов нужно перебежать хотя бы на несколько миллиметров, не говоря уже от одного конца стержня к другому, чтобы выровнять температуру, если каждый из них может перенести 1 квант энергии. Получается, что практически все «горячие» электроны должны перебежать на данное расстояние или на противоположную сторону стержня, чтобы нагреть его до той же температуры. Но, в таком случае, они должны возвратиться обратно, иначе нарушится кристаллическая решетка горячего конца, и металл развалится. А как они вернутся обратно, если температурный градиент направлен в одну сторону?

У физиков есть еще одна версия по переносу тепла. Свободные электроны контактируют, иначе соударяются с другими себе подобными и таким образом, по цепочке переносят тепло с нагретого конца к холодному. Но как заставить контактировать эти электроны, они же свободные и летят куда хотят. Не путать с электрическим током, там электроны подчиняются внешнему электрическому полю, т.к. сами находятся под зарядом и по команде этого поля они выстраиваются в проводящую цепочку. А тепловое, нейтральное поле для свободных электронов не указ, да к тому же пространства вокруг, гораздо больше, чем для мячей футбольное поле. Представьте картину, каждому игроку противоборствующих команд дали по мячу и поставили задачу: попасть в такой же мяч противника. Удары выполняются по очереди с разных сторон поля. И сколько же ударов нужно нанести игрокам, чтобы попасть в заветную мишень. Даже у классных игроков процент попадания будет низкий, не говоря уже о дилетантах, свободных хаотичных игроках. Перенос тепла в этом случае будет ничтожным.

В любых телах и веществах существует только один перенос энергии от одного атома к другому – это электромагнитный или лучеиспускание, что и косвенно подтверждает нам замечательный минерал – алмаз.

Поэтому, теплопроводность есть не что иное, как тот самый лучистый теплообмен. Отсюда следует, что в природе существуют не три вида теплопередачи, а два: лучистый теплообмен и конвекция. По большому счету, конвективные потоки тоже связаны с лучистым теплообменом, но поскольку они идут только в разреженных субстанциях – жидкостях и газах, то конвекцию пока оставим в покое.

В большинстве случаев, в земных условиях, разности температур нет, но теплообмен, как мы знаем, не прекращается между ними ни на долю секунды.

Вот здесь я ловлю себя на слове. Если разности температур не было, то не было бы и теплопередачи. В любом веществе всегда существует разность температур и давлений, только эту разницу мы ничем измерить не можем. Еще не изобрело человечество таких чувствительных приборов, которыми можно было измерить разность температур между молекулами.

Поэтому, определение теплопередачи в общем виде должно быть записано следующим образом: теплопередача — это процесс переноса теплоты внутри тела или от одного тела к другому, обусловленный разностью температур, с помощью электромагнитного излучения.

В широком, всеобъемлющем, смысле формулировка теплопередачи сводится к весьма короткому словосочетанию:

Теплопередача – это выравнивание теплового потенциала.

Вывод из вышесказанного: стены наших зданий нужно делать из воздуха, а батареи отопления в домах следует изготавливать из алмаза!

При выборе качественного теплоизоляционного материала потребитель должен принимать во внимание целый ряд параметров, среди которых неизменно присутствует показатель теплопроводности. Высокой или низкой должна быть теплопроводность, что такое «лямбда», на какие показатели теплопроводности ориентироваться – ответы на эти и другие самые распространенные вопросы, возникающие при покупке утеплителя, вы найдете в данной статье.

Слово «теплопроводность» или еще более запутанное «лямбда» знакомо каждому школьнику из курса физики за восьмой класс. Однако со временем информация, которой мы не пользуемся, забывается. Попробуем освежить в памяти эти несложные и очень полезные знания.

Теплопроводность, как уже было сказано выше — одно из ключевых понятий в современном строительстве, особенно когда речь заходит о теплоизоляционных материалах. От теплопроводности зависит толщина вашей стены или кровли, вес всего дома, а следовательно, и прочность (несущая способность) фундамента, долговечность конструкций и многое другое.

Современное определение теплопроводности – понятие комплексное. И состоит из нескольких составных частей, отвечающих за перенос тепла (теплообмен).

теплопроводность и теплопередача это одно и тоже

На первый взгляд формула кажется пугающей, но на самом деле все просто.

Суммарная или итоговая теплопроводность состоит из теплопроводности за счет конвекции, теплопроводности твердой и газообразной фазы, а также теплопроводности, учитывающей теплообмен за счет излучения.

Запутались еще сильнее? Тогда по порядку.

Разберем каждый элемент этой формулы более подробно.

Теплообмен (или теплопередача) – это способ изменения внутренней энергии без совершения работы над телом или самим телом.

Теплопередача всегда происходит в определенном направлении: от тел с более высокой температурой к телам с более низкой.

Из курса физики нам известно, что теплообмен включает в себя три вида передачи тепла: теплопроводность, конвекцию и излучение.

теплопроводность и теплопередача это одно и тоже

Теплопроводность — явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их
непосредственном контакте.

Если вы опустите ложку в стакан с горячим напитком, нагреется не только та часть ложки, которая погружена в жидкость, но и та ее часть, которая находится над водой.

теплопроводность и теплопередача это одно и тоже

Теплопроводность различных веществ неодинакова, она может быть плохой (низкой) и хорошей (высокой). Хорошая теплопроводность у металлов. Плохая — у шерсти, дерева и пластиков. Самым плохим проводником тепла является вакуум.

Для примера вспомните кухонную посуду: кастрюли и сковородки. Вы вряд ли станете снимать металлическую кастрюлю, полную вкусного супа, с горячей плиты голыми руками, потому что существует реальная опасность обжечь руки. Вместо этого вы используете кухонное полотенце, силиконовые или тряпичные прихватки, то есть те материалы, которые плохо проводят тепло.

Именно поэтому «правильные» кастрюли и сковородки снабжены пластмассовыми или деревянными ручками, плохо проводящими тепло. Вспомнить хотя бы старую бабушкину сковородку с деревянной ручкой: сковородка горячая, а за ручку схватиться можно безо всяких прихваток.

Как объясняется это явление? Рассмотрим на примере нагревания металлического стержня (или ложки из примера со стаканом).

В металле, как и во всех твердых телах, молекулы совершают колебательные движения около некоторых положений равновесия. Скорость колебательного движения молекул металла при нагревании увеличивается в той части, которая ближе расположена к пламени или источнику тепла. Эти молекулы, взаимодействуя с соседними молекулами, передают им часть своей энергии. В результате чего повышается температура отрезка стержня. Затем увеличивается скорость колебательного движения молекул в следующих отрезках стержня и так далее, до тех пор, пока не прогреется весь стержень. Именно поэтому вакуум обладает самой плохой теплопроводностью: в нем практически отсутствуют молекулы, которые бы передавали энергию друг другу. Важно отметить, что сами молекулы, передавая кинетическую энергию, не меняют свое местоположение, то есть само вещество не перемещается.

С первым понятием разобрались, посмотрим, что же дальше.

теплопроводность и теплопередача это одно и тоже

Следующая составляющая теплопроводности – это конвекция. У многих из вас на слуху такой прибор, как «конвектор». А вот почему он так называется, наверное, знает далеко не каждый. Хотя логично предположить, что название свое он получил за принцип работы – конвекцию.

Из курса физики следует, что конвекция — это перенос энергии струями жидкости или газа. Если в случае с теплопроводностью при теплообмене происходит перенос энергии, то при конвекции происходит перенос именно вещества.

Конвекторы (как и любые другие отопительные приборы) нагревают окружающий воздух, вследствие чего температура в комнате повышается и вам становится тепло. При этом струи теплого воздуха поднимаются вверх, а струи холодного опускаются вниз. Аналогично происходит процесс нагревания воды в чайнике: горячая вода поднимается, а холодная опускается на ее место. Этот же принцип заложен в отопительной системе для обогрева домов.

Различают два вида конвекции: естественная и вынужденная.

Нагревание воздуха в комнате солнечными лучами – это пример естественной конвекции. А вот если воздух нагревается тепловым вентилятором, то это уже вынужденная конвекция. Вентилятор заставляет воздух в комнате двигаться, при этом нагревая его до необходимой температуры. В качестве других примеров конвекции можно привести холодные и теплые морские течения, а также образование и движение облаков и ветров.

Переходим к следующей составляющей: излучение (лучистый теплообмен).

Излучение – это способ переноса энергии от одного тела к другому в виде электромагнитных волн. Как правило, это инфракрасное (IR) излучение. Этот принцип заложен еще в одном уникальном приборе – инфракрасном обогревателе.

Принцип его работы построен на том, что любое нагретое тело является источником излучения. Самый впечатляющий пример – Солнце. Пример поменьше – костер, распространяющий тепло на достаточно большое расстояние. В случае с обогревателем окружающие предметы нагреваются за счет электромагнитного излучения и в комнате становится тепло.

Этот вид теплообмена отличается тем, что может происходить и в вакууме. Ведь солнечная энергия как-то доходит до Земли.

Примечательно, что темные тела лучше поглощают и отдают энергию. Если необходимо максимально нагреть материал, его окрашивают в черный цвет. В качестве примера можно привести солнечные коллекторы (водонагреватели), которые устанавливаются на крышах домов. Эти устройства позволяют собирать тепло от солнца и нагревать теплоноситель, который затем передает тепло внутрь дома для обогрева помещений или нагрева воды.

Хуже всего поглощают энергию светлые материалы или материалы с отражающей способностью. Способность светлых тел хорошо отражать лучистую энергию учитывают в самых разных сферах: при строительстве самолетов, при возведении высотных зданий в жарких странах, даже при выборе цвета одежды в теплое время года. На окнах часто применяют металлизированные пленки, которые частично отражают солнечное тепло и спасают помещение от перегрева.

С базовыми принципами разобрались. Пришло время вернуться к нашей формуле.

Итак, вернемся к теплопроводности.

Структурная и газовая теплопроводность – это теплопроводность компонентов, из которых состоит материал, а именно:

  • твердой фазы – теплопроводности полимерного каркаса с множеством ячеек с очень тонкими, но прочными стенками;
  • газообразной фазы – теплопроводность газа, который находится в ячейках.

Если сравнивать теплоизоляцию PIR с пеностеклом или пенобетоном, то по структуре эти материалы схожи. Все они ячеистые и наполнены газом. Однако теплопроводности этих материалов будут отличаться.

Стекло и бетон, в отличие от пластиков, проводят тепло интенсивнее, соответственно, пеностекло и пенобетон обладают большей теплопроводностью и их показатели в качестве теплоизоляторов несколько хуже. Даже полимеры отличаются друг от друга теплопроводностью.

Как было сказано ранее, представленные материалы ячеистые и в каждом находятся какие-то газы. В пеностекле и пенобетоне это, как правило, окружающий воздух, в PIR – инертные газы. Хуже всего тепло проводят инертные газы, содержание молекул в 1 м3 очень маленькое, расстояние между молекулами очень большое, поэтому передать энергию между молекулами довольно сложно. Намного лучше тепло проводит воздух, поскольку он состоит из смеси разных газов, молекул очень много и все они друг с другом взаимодействуют.

Конвекционную составляющую у мелкоячеистой теплоизоляции обычно не рассматривают, поскольку размер ячеек теплоизоляции PIR ничтожно мал (меньше 1мм) и газ в этих ячейках неподвижен.

Последняя составляющая – излучение. Снизить ее влияние можно за счет применения дополнительных материалов, способных отражать тепловой поток. Для этого можно окрасить материал, скажем, в белый цвет. В случае с теплоизоляционными плитами PIR за отражение тепла отвечает фольга, которая покрывает материал с обеих сторон. Помимо функции отражения тепла фольга также несет защитную функцию с точки зрения утечки вспенивающего газа. По своим свойствам фольга является практически идеальным пароизоляционным материалом, а значит, способна задерживать миграции газов во внешнюю среду из ячеек теплоизоляции.

В процессе эксплуатации легкие инертные газы замещаются на более тяжелый окружающий воздух с хорошей теплопроводностью. Это происходит у всех пористых материалов за счет диффузных процессов.

Рассмотрим в качестве примера обычный воздушный шарик, наполненный гелием, который можно сравнить с одной ячейкой вспененной теплоизоляции. Новый шарик все время стремится улететь высоко в небо. Если утром он еще висел под потолком, то со временем он постепенно опустится и будет висеть в центре комнаты, а еще через несколько часов лежать на полу. Т.е. все это время газ за счет диффузии медленно выходит из шарика, и тот теряет свою «летучесть».

Так же и с теплоизоляцией. «Шарики» (ячейки), которые ближе всего расположены к границе с окружающим воздухом постепенно изменяют свой газовый состав. Однако те «шарики», которые находятся глубоко в материале, делают это очень медленно или не делают вовсе, поскольку инертному газу очень сложно пройти огромное количество стенок соседних «шариков» и вырваться наружу.

Кроме того, поверхность теплоизоляции покрыта фольгой, препятствующей выходу газа, соответственно, теплопроводность материала (ее газовая составляющая) сохраняется.

Итоговую формулу теплопроводности PIR можно записать в виде:

Теплоизоляция – это очень важный показатель. От нее зависит, насколько теплым будет ваш дом. У наиболее эффективной теплоизоляции все ее составляющие () должны быть как можно ниже. У современной изоляции на примере LOGICPIR это достигается за счет применения инертных газов, полимеров и специальных покрытий, отражающих тепловой поток. Уверены, что теперь вы не только сможете безошибочно выбрать теплоизоляционный материал, отвечающий самым высоким требованиям, но и поможете своим детям сдать физику на высший балл.

Каталог сайтов Всего.ру
Оцените статью
Всё об отоплении и строительстве
Добавить комментарий