При какой влажности материала его теплопроводность будет наибольшей

Последние годы при строительстве дома или его ремонте большое внимание уделяется энергоэффективности. При уже существующих ценах на топливо это очень актуально. Причем похоже что дальше экономия будет приобретать все большую важность. Чтобы правильно подобрать состав и толщин материалов в пироге ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность строительных материалов. Эта характеристика указывается на упаковках с материалами, а необходима она еще на стадии проектирования. Ведь надо решить из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой.  

Что такое теплопроводность и термическое сопротивление

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

при какой влажности материала его теплопроводность будет наибольшей

Диаграмма, которая иллюстрирует разницу в теплопроводности материалов

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

при какой влажности материала его теплопроводность будет наибольшей

Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше  (а лучше — хоть немного больше) рекомендованной для вашего региона.

при какой влажности материала его теплопроводность будет наибольшей

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

В сухом состоянии При нормальной влажности При повышенной влажности
Войлок шерстяной 0,036-0,041 0,038-0,044 0,044-0,050
Каменная минеральная вата 25-50 кг/м3 0,036 0,042 0,,045
Каменная минеральная вата 40-60 кг/м3 0,035 0,041 0,044
Каменная минеральная вата 80-125 кг/м3 0,036 0,042 0,045
Каменная минеральная вата 140-175 кг/м3 0,037 0,043 0,0456
Каменная минеральная вата 180 кг/м3 0,038 0,045 0,048
Стекловата 15 кг/м3 0,046 0,049 0,055
Стекловата 17 кг/м3 0,044 0,047 0,053
Стекловата 20 кг/м3 0,04 0,043 0,048
Стекловата 30 кг/м3 0,04 0,042 0,046
Стекловата 35 кг/м3 0,039 0,041 0,046
Стекловата 45 кг/м3 0,039 0,041 0,045
Стекловата 60 кг/м3 0,038 0,040 0,045
Стекловата 75 кг/м3 0,04 0,042 0,047
Стекловата 85 кг/м3 0,044 0,046 0,050
Пенополистирол (пенопласт, ППС) 0,036-0,041 0,038-0,044 0,044-0,050
Экструдированный пенополистирол (ЭППС, XPS) 0,029 0,030 0,031
Пенобетон, газобетон на цементном растворе, 600 кг/м3 0,14 0,22 0,26
Пенобетон, газобетон на цементном растворе, 400 кг/м3 0,11 0,14 0,15
Пенобетон, газобетон на известковом растворе, 600 кг/м3 0,15 0,28 0,34
Пенобетон, газобетон на известковом растворе, 400 кг/м3 0,13 0,22 0,28
Пеностекло, крошка, 100 — 150 кг/м3 0,043-0,06
Пеностекло, крошка, 151 — 200 кг/м3 0,06-0,063
Пеностекло, крошка, 201 — 250 кг/м3 0,066-0,073
Пеностекло, крошка, 251 — 400 кг/м3 0,085-0,1
Пеноблок 100 — 120 кг/м3 0,043-0,045
Пеноблок 121- 170 кг/м3 0,05-0,062
Пеноблок 171 — 220 кг/м3 0,057-0,063
Пеноблок 221 — 270 кг/м3 0,073
Эковата 0,037-0,042
Пенополиуретан (ППУ) 40 кг/м3 0,029 0,031 0,05
Пенополиуретан (ППУ) 60 кг/м3 0,035 0,036 0,041
Пенополиуретан (ППУ) 80 кг/м3 0,041 0,042 0,04
Пенополиэтилен сшитый 0,031-0,038
Вакуум 0
Воздух +27°C. 1 атм 0,026
Ксенон 0,0057
Аргон 0,0177
Аэрогель (Aspen aerogels) 0,014-0,021
Шлаковата 0,05
Вермикулит 0,064-0,074
Вспененный каучук 0,033
Пробка листы 220 кг/м3 0,035
Пробка листы 260 кг/м3 0,05
Базальтовые маты, холсты 0,03-0,04
Пакля 0,05
Перлит, 200 кг/м3 0,05
Перлит вспученный, 100 кг/м3 0,06
Плиты льняные изоляционные, 250 кг/м3 0,054
Полистиролбетон, 150-500 кг/м3 0,052-0,145
Пробка гранулированная, 45 кг/м3 0,038
Пробка минеральная на битумной основе, 270-350 кг/м3 0,076-0,096
Пробковое покрытие для пола, 540 кг/м3 0,078
Пробка техническая, 50 кг/м3 0,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Таблица теплопроводности строительных материалов

Стены, перекрытия, пол, делать можно из разных материалов, но так повелось, что теплопроводность строительных материалов обычно сравнивают с кирпичной кладкой. Этот материал знаю все, с ним проще проводить ассоциации. Наиболее популярны диаграммы, на которых наглядно продемонстрирована разница между различными материалами. Одна такая картинка есть в предыдущем пункте, вторая — сравнение кирпичной стены и стены из бревен — приведена ниже. Именно потому для стен из кирпича и другого материала с высокой теплопроводностью выбирают теплоизоляционные материалы. Чтобы было проще подбирать, теплопроводность основных строительных материалов сведена в таблицу.

при какой влажности материала его теплопроводность будет наибольшей

Сравнивают самые разные материалы

в сухом состоянии при нормальной влажности при повышенной влажности
ЦПР (цементно-песчаный раствор) 0,58 0,76 0,93
Известково-песчаный раствор 0,47 0,7 0,81
Гипсовая штукатурка 0,25
Пенобетон, газобетон на цементе, 600 кг/м3 0,14 0,22 0,26
Пенобетон, газобетон на цементе, 800 кг/м3 0,21 0,33 0,37
Пенобетон, газобетон на цементе, 1000 кг/м3 0,29 0,38 0,43
Пенобетон, газобетон на извести, 600 кг/м3 0,15 0,28 0,34
Пенобетон, газобетон на извести, 800 кг/м3 0,23 0,39 0,45
Пенобетон, газобетон на извести, 1000 кг/м3 0,31 0,48 0,55
Оконное стекло 0,76
Арболит 0,07-0,17
Бетон с природным щебнем, 2400 кг/м3 1,51
Легкий бетон с природной пемзой, 500-1200 кг/м3 0,15-0,44
Бетон на гранулированных шлаках, 1200-1800 кг/м3 0,35-0,58
Бетон на котельном шлаке, 1400 кг/м3 0,56
Бетон на каменном щебне, 2200-2500 кг/м3 0,9-1,5
Бетон на топливном шлаке, 1000-1800 кг/м3 0,3-0,7
Керамическийй блок поризованный 0,2
Вермикулитобетон, 300-800 кг/м3 0,08-0,21
Керамзитобетон, 500 кг/м3 0,14
Керамзитобетон, 600 кг/м3 0,16
Керамзитобетон, 800 кг/м3 0,21
Керамзитобетон, 1000 кг/м3 0,27
Керамзитобетон, 1200 кг/м3 0,36
Керамзитобетон, 1400 кг/м3 0,47
Керамзитобетон, 1600 кг/м3 0,58
Керамзитобетон, 1800 кг/м3 0,66
ладка из керамического полнотелого кирпича на ЦПР 0,56 0,7 0,81
Кладка из пустотелого керамического кирпича на ЦПР, 1000 кг/м3) 0,35 0,47 0,52
Кладка из пустотелого керамического кирпича на ЦПР, 1300 кг/м3) 0,41 0,52 0,58
Кладка из пустотелого керамического кирпича на ЦПР, 1400 кг/м3) 0,47 0,58 0,64
Кладка из полнотелого силикатного кирпича на ЦПР, 1000 кг/м3) 0,7 0,76 0,87
Кладка из пустотелого силикатного кирпича на ЦПР, 11 пустот 0,64 0,7 0,81
Кладка из пустотелого силикатного кирпича на ЦПР, 14 пустот 0,52 0,64 0,76
Известняк 1400 кг/м3 0,49 0,56 0,58
Известняк 1+600 кг/м3 0,58 0,73 0,81
Известняк 1800 кг/м3 0,7 0,93 1,05
Известняк 2000 кг/м3 0,93 1,16 1,28
Песок строительный, 1600 кг/м3 0,35
Гранит 3,49
Мрамор 2,91
Керамзит, гравий, 250 кг/м3 0,1 0,11 0,12
Керамзит, гравий, 300 кг/м3 0,108 0,12 0,13
Керамзит, гравий, 350 кг/м3 0,115-0,12 0,125 0,14
Керамзит, гравий, 400 кг/м3 0,12 0,13 0,145
Керамзит, гравий, 450 кг/м3 0,13 0,14 0,155
Керамзит, гравий, 500 кг/м3 0,14 0,15 0,165
Керамзит, гравий, 600 кг/м3 0,14 0,17 0,19
Керамзит, гравий, 800 кг/м3 0,18
Гипсовые плиты, 1100 кг/м3 0,35 0,50 0,56
Гипсовые плиты, 1350 кг/м3 0,23 0,35 0,41
Глина, 1600-2900 кг/м3 0,7-0,9
Глина огнеупорная, 1800 кг/м3 1,4
Керамзит, 200-800 кг/м3 0,1-0,18
Керамзитобетон на кварцевом песке с поризацией, 800-1200 кг/м3 0,23-0,41
Керамзитобетон, 500-1800 кг/м3 0,16-0,66
Керамзитобетон на перлитовом песке, 800-1000 кг/м3 0,22-0,28
Кирпич клинкерный, 1800 — 2000 кг/м3 0,8-0,16
Кирпич облицовочный керамический, 1800 кг/м3 0,93
Бутовая кладка средней плотности, 2000 кг/м3 1,35
Листы гипсокартона, 800 кг/м3 0,15 0,19 0,21
Листы гипсокартона, 1050 кг/м3 0,15 0,34 0,36
Фанера клеенная 0,12 0,15 0,18
ДВП, ДСП, 200 кг/м3 0,06 0,07 0,08
ДВП, ДСП, 400 кг/м3 0,08 0,11 0,13
ДВП, ДСП, 600 кг/м3 0,11 0,13 0,16
ДВП, ДСП, 800 кг/м3 0,13 0,19 0,23
ДВП, ДСП, 1000 кг/м3 0,15 0,23 0,29
Линолеум ПВХ на теплоизолирующей основе, 1600 кг/м3 0,33
Линолеум ПВХ на теплоизолирующей основе, 1800 кг/м3 0,38
Линолеум ПВХ на тканевой основе, 1400 кг/м3 0,2 0,29 0,29
Линолеум ПВХ на тканевой основе, 1600 кг/м3 0,29 0,35 0,35
Линолеум ПВХ на тканевой основе, 1800 кг/м3 0,35
Листы асбоцементные плоские, 1600-1800 кг/м3 0,23-0,35
Ковровое покрытие, 630 кг/м3 0,2
Поликарбонат (листы), 1200 кг/м3 0,16
Полистиролбетон, 200-500 кг/м3 0,075-0,085
Ракушечник, 1000-1800 кг/м3 0,27-0,63
Стеклопластик, 1800 кг/м3 0,23
Черепица бетонная, 2100 кг/м3 1,1
Черепица керамическая, 1900 кг/м3 0,85
Черепица ПВХ, 2000 кг/м3 0,85
Известковая штукатурка, 1600 кг/м3 0,7
Штукатурка цементно-песчаная, 1800 кг/м3 1,2

Древесина — один из строительных материалов с относительно невысокой теплопроводностью. В таблице даны ориентировочные данные по разным породам. При покупке обязательно смотрите плотность и коэффициент теплопроводности. Далеко не у всех они такие, как прописаны в нормативных документах.

В сухом состоянии При нормальной влажности При повышенной влажности
Сосна, ель поперек волокон 0,09 0,14 0,18
Сосна, ель вдоль волокон 0,18 0,29 0,35
Дуб вдоль волокон 0,23 0,35 0,41
Дуб поперек волокон 0,10 0,18 0,23
Пробковое дерево 0,035
Береза 0,15
Кедр 0,095
Каучук натуральный 0,18
Клен 0,19
Липа (15% влажности) 0,15
Лиственница 0,13
Опилки 0,07-0,093
Пакля 0,05
Паркет дубовый 0,42
Паркет штучный 0,23
Паркет щитовой 0,17
Пихта 0,1-0,26
Тополь 0,17

Металлы очень хорошо проводят тепло. Именно они часто являются мостиком холода в конструкции. И это тоже надо учитывать, исключать прямой контакт используя теплоизолирующие прослойки и прокладки, которые называются термическим разрывом. Теплопроводность металлов сведена в другую таблицу.

Бронза 22-105 Алюминий 202-236
Медь 282-390 Латунь 97-111
Серебро 429 Железо 92
Олово 67 Сталь 47
Золото 318

Как рассчитать толщину стен

Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.

при какой влажности материала его теплопроводность будет наибольшей

Термическое сопротивление ограждающих
конструкций для регионов России

Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.

Расчет толщины стены, толщины утеплителя, отделочных слоев

Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:

при какой влажности материала его теплопроводность будет наибольшей

Формула расчета теплового сопротивления

R — термическое сопротивление;

p — толщина слоя в метрах;

k — коэффициент теплопроводности.

Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.

Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.

Пример расчета толщины утеплителя

Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.

  1. Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5  кирпича.
  2. Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами. при какой влажности материала его теплопроводность будет наибольшей

    Рассчитывать придется все ограждающие конструкции

  3. Считаем толщину минеральной ваты. Ее коэффициент теплопроводности 0,045. Толщина слоя будет: 2,82*0,045 = 0,1269 м или 12,7 см. То есть, чтобы обеспечить требуемый уровень утепления, толщина слоя минеральной ваты должна быть не меньше 13 см.

Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными. Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание.

Теплопроводность есть способность материала проводить тепло через свою массу. Степень теплопроводности материала характеризуется величиной его коэффициента теплопроводности λ. Коэффициент теплопроводности показывает количество тепла в Вт которое будет проходить за 1 ч через 1 м плоской стенки толщиной 1 м при разности температур на ее поверхностях, равной 1°С. Коэффициенты теплопроводности строительных материалов изменяются в пределах от λ =0,035 (мипора, пенополистирол) до λ =3 Вт/(м ·°С) (гранит). Металлы имеют еще большие величины коэффициента теплопроводности. Величина коэффициента теплопроводности для одного и того же материала не является величиной постоянной, она может изменяться в зависимости от его объемного веса, влажности, температуры и направления теплового потока. Зависимость коэффициента теплопроводности материала от его объемного веса. С увеличением объемного веса (уменьшением пористости) коэффициент теплопроводности материала возрастает и наоборот. Изменение коэффициента теплопроводности строительных материалов с изменением их объемного веса происходит вследствие того, что всякий строительный материал состоит из основного вещества — скелета (кварца, кальцита, глинозема и т.п.) и воздуха, находящегося в порах материала.

Коэффициент теплопроводности самого материала равен некоторой средней величине между коэффициентом теплопроводности основного вещества материала и коэффициентом теплопроводности воздуха, содержащегося в порах. Чем меньше пор в материале, а следовательно, чем больше его объемный вес, тем больше и его коэффициент теплопроводности и наоборот.

Единой для всех материалов зависимости между теплопроводностью материала и его объемным весом не существует, так как на величину коэффициента теплопроводности оказывают влияние кроме пористости также размер пор и структура материала. При одинаковой пористости величина λ, будет тем больше, чем крупнее поры материала, так как с увеличением размера пор повышается коэффициент теплопроводности воздуха, заключенного в порах.

На коэффициент теплопроводности влияет также величина контактных площадок между отдельными частицами материала: чем эти площадки будут больше, тем выше будет и λ. Кроме того, имеет значение, будут ли поры замкнутыми или сообщаться между собой. При сообщающихся порах в материале могут возникать конвекционные токи воздуха, что приводит к увеличению его коэффициента теплопроводности.

На величину коэффициента теплопроводности материала оказывает влияние теплопроводность основного вещества (скелета).

Лучшими теплотехническими показателями обладают легкие материалы. Если для получения удовлетворительных теплотехнических качеств наружных стен жилых зданий в условиях Москвы толщина стены из обычного кирпича должна быть в 2,5 кирпича, то при применении пористого кирпича с объемным весом 1200 кг/м3 и легкого шлакового раствора эта толщина снижается до 1,5 кирпича.

Для сыпучих материал коэффициент теплопроводности уменьшается с уменьшением объемного веса и величины их зерен. Чем мельче частицы сыпучего материала, тем меньше воздушные полости, разделяющие частицы, а следовательно, и меньше теплопроводность содержащегося в них воздуха; кроме того, по мере измельчения частиц уменьшается и объемный вес материала, и количество проводящего тепло вещества.

Во всех справочниках и формах параллельно со значениями λ, материала приводятся значения γ, что необходимо для правильного выбора коэффициента теплопроводности.

Зависимость коэффициента теплопроводности материала от его влажности.Влажность материала в значительной степени определяет его коэффициент теплопроводности. С повышением влажности материала резко повышается и его коэффициент теплопроводности.

Повышение коэффициента теплопроводности материала с увеличением его влажности объясняется тем, что вода, находящаяся в порах материала, имеет коэффициент теплопроводности λ =0,5 Вт/(м ·°С), т.е. в 20 раз больший, чем λ воздуха в порах среднего размера. Кроме того, влага в порах материала увеличивает размеры контактных площадок между частицами материала, что также повышает его коэффициент теплопроводности.

Большая интенсивность возрастания коэффициента теплопроводности материала при малой влажности объясняется тем, что при увлажнении материала сначала заполняются водой более мелкие поры и капилляры, влияние которых на теплопроводность материала больше, чем крупных пор. Еще более резко возрастает коэффициент теплопроводности в том случае, если влажный материал промерзнет, так как лед имеет коэффициент теплопроводности λ =2 Вт/(м ·°С), т. е. в 4 раза больший, чем вода, и в 80 раз больший, чем воздух в порах материала. Однако необходимо учитывать, что замерзание влаги в порах материала происходит при температуре ниже 0°С, причем, чем меньше размер пор, тем при более низких температурах будет замерзать влага во влажном материале. Замерзание влаги в строительных материалах происходит постепенно по мере понижения температуры. Очевидно, какое большое влияние на теплотехнический режим ограждения оказывает его влажностное состояние. О причинах повышения влажности материала в наружных ограждениях, расчете влажностного режима, а также о мерах, обеспечивающих нормальный влажностный режим ограждений, сказано во второй части.

Зависимость коэффициента теплопроводности материала от его температуры.Коэффициент теплопроводности материала увеличивается с повышением его средней температуры, при которой происходит передача тепла. Увеличение теплопроводности материалов с повышением их температуры происходит в результате увеличения теплопроводности основной их массы из-за возрастания кинетической энергии молекул. Кроме того, с повышением температуры возрастает и теплопроводность воздуха в порах материала, а также интенсивность передачи в них тепла излучением. В строительной практике зависимость теплопроводности от температуры практического значения не имеет, так как изменение температуры материала в строительных ограждениях редко превышает 60 °С. В практике теплоизоляции поверхностей с высокой температурой, где изменения температуры могут быть значительными, эту зависимость приходится учитывать. Для пересчета значений коэффициентов теплопроводности материалов, полученных при температурах до 100°С, на значения их при 0°С служит эмпирическая формула О.Е. Власова

где 0 — коэффициент теплопроводности материала при 0 °С; — коэффициент теплопроводности материала при t °С; t — температура материала, при которой коэффициент теплопроводности его равен , β — коэффициент для различных строительных материалов, равный примерно 0,0025. В справочниках и руководствах параллельно с указанием величины коэффициента теплопроводности материалов приводятся также температуры, при которых получен этот коэффициент.

Зависимость величины коэффициента теплопроводности от направления теплового потока наблюдается только у анизотропных материалов. Коэффициент теплопроводности древесины значительно увеличивается при направлении теплового потока параллельно направлению волокон, например для сосны на 100%. Различие в величинах коэффициентов теплопроводности дерева в зависимости от направления теплового потока объясняется тем, что при направлении, перпендикулярном волокнам, тепловом потоку приходится пересекать большое количество воздушных зазоров, находящихся внутри волокон древесины и между ними и оказывающих сопротивление прохождению тепла. При направлении теплового потока параллельно волокнам тепловой поток будет идти по стенкам волокон, и в этом случае сопротивление воздуха, заключенного в древесине, будет значительно меньше.

Направление теплового потока влияет на величину коэффициента теплопроводности также у прессованных материалов или материалов, .имеющих волокнистую структуру, и у кристаллов. У изотропных материалов направление теплового потока не влияет на их коэффициент теплопроводности. Увеличением коэффициента теплопроводности древесины при потоке тепла вдоль волокон объясняется резкое понижение температуры в наружных углах деревянных бревенчатых или брусковых стен. При выборе значений коэффициента теплопроводности древесины необходимо учитывать расположение дерева в конструкции и направление теплового потока, например, для деревянного дощатого пола коэффициент теплопроводности древесины будет меньше, чем для пола из торцовых шашек, так как в первом случае поток тепла имеет направление, перпендикулярное волокнам древесины, а во втором параллельное им.

Выбор расчетных значений коэффициентов теплопроводности строительных материалов.Самой трудной и ответственной частью теплотехнических расчетов является выбор расчетных величин коэффициентов теплопроводности материалов, входящих в конструкцию. В СНиП II—3-79*(издание 98 года) для каждого материала даются три значения коэффициента теплопроводности — для сухого состояния, для нормальной влажности, для повышенной влажности. Выбор значений X делается в зависимости от относительной влажности воздуха в помещении и от влажностно-климатической характеристики места строительства. Если рассматриваемый материал по составу и по объемному весу совпадает с одним из материалов, приведенных в СНиП, то величина коэффициента теплопроводности материала берется непосредственно по нормам. Если объемный вес материала отличается от приведенного в СНиП, его расчетный коэффициент теплопроводности определяется по интерполяции между известными значениями для других объемных весов или по экстраполяции за пределами крайних значений.

Дата добавления: 2015-08-11; просмотров: 5736;

ПОСМОТРЕТЬ ЕЩЕ:

При температуре воздуха ниже 0С в наружных ограждениях имеется зона с отрицательной температурой. Так как материалы ограждений обычно в большей или меньшей степени увлажнены, то влага в порах и может замерзнуть. Учитывая более высокую теплопроводность льда по сравнению с водой, полагают, что теплозащитная способность ограждения при этом должна ухудшиться.

Имеющиеся в литературе данные а коэффициентах теплопроводности строительных материалов довольно разные. Так, по данным А. У. Франчука, Т. Ф. Таганцевой н Ю. Г. Бурова теплопроводность материалов пои отрицательной температуре больше, чем при положительной. В Ушков показывает, что в легких бетонах н з пористых заполнителях (керамзитобетон, шлакопемзобетон) теплопроводность материалов при отрицательной температуре может быть меньше, чем при полу-киельной. Он объясняет это тем, что во влажных пористых материалах при отрицательной температуре влага, замерзая в первую очередь в .крупных порах, не превращается в лед, а выпадает в виде инея, коэффициент теплопроводная способность цементирующего соединения увеличилась.

В условиях теплоплажностной обработки образование цементирующих веществ в автоклавных материалах про исходит как за счет взаимодействии шлакового вяжущего с кварцем, так и с полевошпатовыми минералами в полевошпатовом песке. На базе песков, содержащие полевые шпаты (до 60%), что соответствует содержанию R20 да 7%. могут быть получены автоклавные строительные материалы хорошего качества.

Относительное уменьшение теплопроводности материалов может быть объяснено фазовым составом воды и особенностями процесса ее замерзания в порах материалов. При влажности меньшем, чем содержание незамерзшей воды при данной отрицательной температуре, влага в материале не претерпевает фазовых превращений, а следовательно, теплопроводность материала не может быть больше, чем при положительной. Более того, вследствие влияния температуры па теплопроводность, последняя при отрицательной температуре будет меньше чем при положительной.

При большом влагосодержащая часть воды в материале замерзает. Вначале лед образуется на стенках крупных пор, н так как лед обладает значительным подсасыпающим действием, то к нему подтягивается влага из мелких пор, где вода замерзает при более низкой температуре. До тех пор, пока растущие кристаллы льда достигнут противоположных стенок пор, вследствие «обезвоживания» мелких нор, теплопроводность материала при отрицательной температуре будет меньше, чем при положительной. Заполнение большинства пор образовавшимся льдом происходит при весьма большой влажности материала. В этом случае лед в порах образует «мостики холода», и теплопроводность материала резко возрастает и становится больше, чем при положнтельной температуре.

Условно можно рассматривать три степени увлажнения:

Область малой влажности, когда она не превышает значения содержания не- замерзшей воды. В этой области теплопроводность материала при отрицательной температуре меньше, чем прн положительной, вследствие отсутствия фазовых переходов воды в лед п влияния температуры на теплопроводность материала.

Область средней влажности — от значения содержания незамерзшей воды до влажности, соответствующей равенству коэффициентов теплопроводности при температурах выше и ниже 0°С. В этой области теплопроводность материала прн отрицательной температуре также меньше, чем при положительной вследствие «обезвоживания» мелких и отсутствие «мостиков холода» в крупных порах.

Область большой влажности или перед увлажнения. При этой влажности теплопроводность материала при отрицательной температуре больше, чем при положительной: увеличение это вызвано наличием в большинстве пор «мостиков холода».

Таким образом, наличие незамерзшей воды и особенности процесса льдообразования в пористых строительных материалах оказывает своеобразное влияние на теплопроводность при отрицательной температуре. При небольшой влажности теплопроводность Mart риалов при отрицательной температуре меньше, чем при положительной, и только по достижении определенной влажности теплопроводность материалов резко возрастает и становится значительно больше, чем при положительной.

Представление о той, что коэффициент теплопроводности влажных магриалов при отрицательной температуре всегда больше, чем при положительной, ошибочно. Величина его больше, чем при положительной лишь в том случае, если влажность материи ia превышает некоторую критическую величину.

Критическая влажность для разных материалов различна: чем больше содержание незамерзшей воды, тем она выше. Превышение влажности за пределы критического значения приводит к резкому возрастанию коэффициент теплопроводности терпела.

Местные переувлажнения даже в тонком слое при отрицательных темпера i/pax могут оказать заметное отрицательное влияние на теплозащитную способность ограждения.