Очистка воды от железа и марганца из скважины

ochistka vody ot zheleza i marganca iz skvazhiny Водоснабжение

Пока вопрос водоподготовки отложил… отводить дренаж реально непонятно куда, на носу осень-зима, в котельной места практически нет…

Пока поставил таки два BB20 (механику, обезжелезивание). Получил забавный эффект непосредственно после запуска: первые несколько часов не смывалось мыло, как от мягкой воды. Потом это исчезло.

Вода из крана прозрачная, но имеет чуть заметный чужеродный привкус. И при отстаивании через сутки-двое появляется чуть заметная желтизна и минимальный осадок. А вот если налить горячую ванну, то желтизна появляется за 15-20 минут, и ярко выраженная. Что визуально неприятно, и ванну пачкает, но насколько вредно, не знаю.

На стирке никаких следов железа… непонятно, почему в ванной есть, а на одежде из стирки нет. Может это и не железо вовсе?

Вода, пропущенная через бытовой фильтр-кувшин за 500р — прозрачная, без привкуса, при отстаивании никакого осадка. Что такого делает фильтр-кувшин, что не делают BB20 на магистрали. Непонятно.

Думаю попробовать дожить до весны с такой водой — пить через кувшин, с желтизной ванны смириться. А весной-летом уже пытаться решать что-то с более серьёзной водоподготовкой. Что-то всё больше смотрю в сторону Аэромага: это явно решение и вопроса с местом, и вопроса с дренажом, а @eurobion создаёт впечатление человека, которому можно верить. Да и тот факт, что Аэромагами торгуют уже десятки контор, увеличивает вероятность что эта штука действительно работает (хотя конечно не гарантирует это). Но практически полное отсутствие отзывов реальных пользователей напрягает.

Обезжелезивание — удаление железа и марганца из воды — это сложная задача для быта и производства. Нет универсального метода на все случаи, который был бы при этом экономически оправдан на всех объектах. Если бы он был — мы бы все о нем знали. Однако, методов много и каждый из них применим в определенных пределах и, конечно, имеет свои недостатки. Большинство людей пишут мне: «Павел, железо в воде. Фирмы предлагают разные методы от 30 до 150 тысяч рублей. Кому верить? Что делать?»

Ну, тут есть два путя, либо платить солидной фирме сколько скажут, скорее всего сумма будет очень большая. Либо решать вопрос с умом — самообразовываться. Теоретически подготовиться к решению своих задач.

Читать учебники по водоочистке трудно — их много и они почти все написаны в 60-х годах прошлого века в то время, когда индивидуальных систем очистки воды еще не было, а были крупные районные и поселковые станции. Штудировать форумы тоже тяжело — слишком много флуда, ругани, информация очень противоречива.

Меня зовут Павел Куркин. Я занимаюсь водоочисткой больше 5 лет, работал в фирмах, сейчас работаю на себя, веду блог ochistkavodi.ru и видеоблог youtube/Samopalych о водоочистке. За консультацией обращайтесь, это бесплатно, контакты даны в соответствующем разделе. Я создаю информационный ресурс по водоочистке, чтобы пролить, так сказать, свет на все темные углы этой нехарактерной для повседневной жизни сферы бытовых вопросов.

Итак, давайте разбираться… что же такое обезжелезивание воды и… Как убрать железо в современных российских реалиях 2016г?

Для начала определимся с понятиями. Железо в воде. Есть железо общее (по нему делают анализ обычно), есть железо растворенное (двухвалентное), есть железо нерастворенное (трехвалентное), т.е. как бы в виде частиц. Мы видим эти частицы как цветность и мутность воды, так же, как хлопья или слизь оранжевых и красных оттенков. Это гидролизованная ржавчина, гидроксид или гидроокись. Называют по-разному. Иногда «железо» в воде может быть черным — это уже продукты метаболизма бактерий. Так называемое органическое железо.

Признаки железа в воде:

очистка воды от железа и марганца из скважины

  • Запах. Конечно! Мы все знаем запах железа с детства, когда на руках оставался запах металла после турника и качелей.
  • Вкус. Вкус железа трудно спутать с чем-то еще. Попробуйте воду на вкус и вы поймете есть в ней железо или нет.
  • Мутность. Вода бывает мутной от окислившегося железа. Обычно эта мутность довольно стабильна и не хочет осаждаться.
  • Цвет. Красноватые, рыжеватые оттенки — признак окисления железа в воде.
  • Осадок. Когда реакция окисления железа завершится — железо выпадет в осадок на дно емкости, вода снова станет прозрачной.

Рыжие несмываемые следы на сантехнике — самый верный признак необходимости удаления железа из воды.

Железо, как и другие металлы, например марганец, в бытовой водоподготовке удаляются несколькими различными методами. Перечислим их в порядке актуальности:

  1. Окисление и последующая фильтрация «твердых» фракций
  2. Окисление и фильтрация пиролюзитом (MnO2)
  3. Ионный обмен (умягчение)
  4. Обратный осмос (опреснение, обессоливание)

Я подготовил для Вас коротенькую таблицу для сравнительного анализа методов, применяемых в бытовой водоподготовке.

оборудования

Выбор метода обезжелезивания зависит от множества различных факторов, таких, например как:

  • требуемый объем чистой воды в час и в сутки,
  • содержание железа, марганца, сероводорода в исходной воде
  • pH (водородный показатель) — чрезвычайно важный параметр
  • перманганатная окисляемость
  • другие загрязнения воды

Основополагающий фактор, конечно — это экономическая целесообразность, а в случае частного загородного жилья — кошелек хозяина. В таблице выше я сравниваю начальную стоимость метода обезжелезивания и стоимость последующей эксплуатации по отношению к получаемому объему чистой воды.

Так, например, окисление (промежуточная емкость, аэрация или дозация гипохлорита) с последующей фильтрацией — это способ требующий вложений. Оборудование аэрации стоит от 650$, обезжелезиватель от 250-400$, но мы получаем МНОГО воды 1-2 и более кубов в час, десятки кубов в сутки, количество ограничено в основном объемом загрузки (диаметром и толщиной слоя).

ПРИМЕР: для сорбентов АС/МС допустимая скорость фильтрации до 20м/ч при диаметре колонны в 13 дюймов (площадь круга = 0,08м получаем не менее 1,6 м3 воды в час и примерно 37 кубов воды в сутки (час кладу на пару промывок). Среднее потребление большого дома 1,5-2 м3/сутки.

Итак, рассмотрим различные методы удаления железа:

Содержание
  1. Окисление и последующая фильтрация.
  2. Окисление и фильтрация пиролюзитом (MnO2).
  3. Принцип работы фильтрационной системы
  4. Варианты обустройства очистительной системы
  5. Оборудование и материалы для фильтрации
  6. Монтаж очистительной системы поэтапно
  7. Очистка воды от железа и марганца: обезжелезивание и деманганация (удаление марганца). Нужно ли очищать воду из скважины
  8. Важность очистки воды от марганца
  9. Современные способы (методы) и процесс глубокой очистки воды из скважины от марганца. Оборудование и материалы для фильтрации
  10. Очистка воды от марганца с применением обезжелезивателя
  11. Очистка воды от марганца с применением фильтра комплексной очистки
  12. Очистка воды от марганца с применением накопительных баков
  13. Принципы работы фильтрационной системы и удаление марганца из воды
  14. Очистка воды от марганца перманганатом калия
  15. Очистка воды от марганца каталитическим способом
  16. Очистка воды от марганца на модифицированной загрузке
  17. Очистка воды от марганца введением реагентом
  18. Очистка воды от марганца диоксидом хлора или озоном
  19. Очистка воды от марганца ионным обменом
  20. В каких случаях нужна очистка воды от железа и марганца
  21. Откуда берутся железо и марганец в воде?
  22. Фильтры для очистки воды от железа и марганца: основные материалы
  23. Современные системы очистки воды для коттеджа, квартиры, дома и дачи. Варианты обустройства очистительной системы

Окисление и последующая фильтрация.

В зависимости от количества кислорода, растворенного в воде железо может находиться в:

  • двухвалентном Fe(OH)2 растворенном и
  • трехвалентном Fe(OH)3 нерастворенном состоянии…

Которое в свою очередь можно разделить на коллоидную формузоль трехвалентного железа (выглядит, как мутная вода) и крупные хлопья, способные выпадать в осадок.

Суть метода ОКИСЛЕНИЯ заключается в том, чтобы перевести железо из растворенного (двухвалентного Fe(OH)2) состояния в «твердое» нерастворенное трехвалентное Fe(OH)3 за счет присоединения к молекуле железа еще одного иона OH. В этом случае железо, а так же многие другие вещества (марганец, сероводород, органика) не может больше оставаться в растворенном виде и образует относительно крупные образования молекул — коллоиды и более крупные частицы, которые могут быть удалены механически — отфильтрованы.

Поскольку в глубинных скважинах кислорода в воде практически нет, то вода, содержащая большую концентрацию растворенных металлов выходит на поверхность абсолютно прозрачная и, поимев контакт с воздухом, мутнеет, либо окрашивается в оттенки рыжего через некоторое время (от получаса до суток). А еще через какое-то время (1-3 суток) может снова стать прозрачной и безвкусной, на дне образуется осадок.

Мутность измеряют специальным прибором, используя единицу измерения ЕМФ для определения мутности воды

Из колодцев, поселковых водопроводов и открытых источников вода часто идет мутная, что говорит о содержании в воде различных взвесей (окисленных до трехвалентного состояния металлов, органических веществ, песка, глины) в виде коллоидных частиц — слишком мелкие, чтобы видеть глазом, но достаточно крупные, чтобы мешать прохождению светового потока. Это происходит из-за повышенного содержания кислорода в такой воде. Вода растворяет в себе газы при определенных физико-химических условиях. Если поместить воду в открытую емкость, со временем количество растворенного кислорода, в такой воде установится в зависимости от температуры, и парциального давления. Тоже самое касается и цветности воды. Кислород обладает способностью к диффузии — проникновению сквозь стенку трубы в воду. Поэтому длинный водопровод часто несет в себе мутную воду, если вода изначально железистая.

Методы окисления, используемые в быту и на мелких производствах:

  • Открытая емкость. Суть процесса — разбрызгать (аэрировать) воду над емкостью, в которой она накапливается в количестве достаточном для прохождения процесса окисления металлов и выхода сероводорода, либо остаточного хлора. Далее следует насос второго подъема, который забирает воду с поверхности воды в емкости и заталкивает ее снова в трубу, по которой вода подается на фильтр, например обезжелезиватель. Почитать больше…
  • Напорная аэрация. Воздух подается в водопроводную трубу с помощью компрессора под напором, превышающим напор воды. Далее, для разделения воды насыщенной кислородом от пузырьков (нерастворенного воздуха) используется колонна аэрации. Это пустой баллон с системой трубок внутри. Вода забирается на обезжелезиватель со дна емкости. В верхней части баллона есть воздухоотводная трубка длинной в четверт высоты баллона. На ее длину формируется воздушный пузырь. Чтобы вода не выбрасывалась из колонны используется воздухоотводный клапан с поплавковым механизмом, выпускающий наружу только воздух. Компрессор приводится в действие реле протока, установленным после системы водоочистки. Почитать больше…
  • Дозация гипохлорита. Гипохлорит NaClO — активное вещество, охотно отдающее кислород для окисления всего, что может быть окислено. Рабочий раствор подается в водопровод с помощью насоса-дозации. Далее возможно наличие контактной (пустой) емкости, в которой жидкость задерживается для продления реакции окисления. В любом случае затем вода подается на фильтр (обезжелезиватель). После обезжелезивателя как правило устанавливают угольный фильтр, который может так же выполнен в виде колонны загруженной активированным углем. Почитать больше…
  • Озонирование воды. Озон — очень активный окислитель. Он производится генератором озона и подается в водопровод. Реакции окисления с озоном происходят быстрее, но стоимость оборудования делает не актуальной установку такого оборудования для бытовой водоочистки.

Вне зависимости от того каким именно методом были окислены металлы и сероводород, растворенные в воде следующей ступенью водоочистки идет фильтрация. Отфильтровать частицы можно и с помощью очень мелкой сетки (мембраны) и с помощью нетканых полипропиленовых картриджей. Но эти методы не эффективны, потому что частицы окисленных металлов слишком малы — пол мкм, в том время, как сетка самого мелкого полипропиленового фильтр имеет ячейку 1 мкм.

В современной бытовой водоочистке фильтрация происходит с помощью напольных засыпных фильтров колонного типа с механизмом промывки загрузки, установленном сверху на баллоне.

Загрузкой называют все зернистые компоненты, которые засыпаются в колонну фильтра через верхнее отверстие (единственное в баллоне). Загрузка имеет свой срок службы, который может быть от 3-х до 10 и более лет.

Механизм промывки может быть автоматическим, либо ручным. Загрузка (кварцевый песок, сорбент, различные гранулы) промывается периодически, раз в несколько дней. На промывку загрузки в среднем уходит 200-500л воды (для бытовой системы на дом). Все стоки с обезжелезивателя вне зависимости от метода окисления воды могут быть направлены в септик или станцию аэрации типа «Топас». Да, это совершенно безопасно для септиков и станций аэрации.

В качестве корпуса фильтра используются композитные легкие баллоны (они же колонны, емкости) стандартных типоразмеров от 08 до 18 дюймов в диаметре. Они так же различаются по высоте от 35 до 65 дюймов. Есть баллоны и других размеров, но для наших целей они не актуальны. Под конкретные задачи водоочистки подбирается подходящая колонна — нужных диаметра и высоты.

Таблица типоразмеров баллонов, используемых в бытовых системах водоочистки:

Размер баллона Высота/диаметр, мм Вес пустого баллона, кг Объем корпуса, л Объем загрузки, л
0844 горловина 2,5″ 1122/215 5 32 25
1035 горловина 2,5″ 903/257 8,63 39 26
1044 горловина 2,5″ 1130/257 9,10 51 34
1054 горловина 2,5″ 1390/257 9,30 63 42
1252 горловина 2,5″ 1342/308 10,00 97 65
1344 горловина 2,5″ 1142/334 9,50 86 57
1354 горловина 2,5″ 1400/334 10,40 104 70
1465 горловина 2,5″ 1679/360 15,25 150 100

Фильтрация воды в колонных фильтрах обезжелезивания происходит при прохождении воды сквозь загрузку сверху вниз. Основные загрязнения (крупные частицы) осаждаются на поверхности фильтрующего слоя, более мелкие фракции, в том числе коллоиды сорбируются в средних и нижних слоях. Кроме того многие загрузки обладают каталитическими свойствами, то есть ускоряют и усиливают реакцию окисления и выпадения в осадок загрязнений воды, в таком случае все, что было выделено из раствора в твердую фракцию задерживается в толще загрузки. Есть еще более интересные загрузи, обладающие АВТОкаталитическими свойствами, т.е. они самостоятельно без участия внешнего окислителя удаляют растворенные вещества, но об этом поговорим позже.

Более продробно устройство фильтра описано в этой статье…

очистка воды от железа и марганца из скважины

Клапан управления обезжелезивателем PENTAIR 363

Сверху на фильтре устанавливают клапан управления.

Клапан управления представляет собой систему каналов, по которым движется вода, запорный механизм, направляющий воду по нужному на данном этапе цикла каналу и блок управления с электроприводом для автоматического клапана, либо ручку для ручного переключения режимов для ручного клапана управления.

Фильтры бывают трехцикловые для безреагентных обезжелезивателей, либо пятицикловые для реагентной промывки. Реагентная промывка — это не просто взрыхление загрузки, а пропускание через загрузку реагента (например, раствора перманганата калия) для более глубокой очистки загрузки и восстановления ее каталитических свойств.

Переключая режимы с помощью ручки, либо автоматически за счет электронного блока управления мы организуем промывку фильтра.

Во время промывки фильтра вода не поступает к потребителю, а выбрасывается в дренаж (канализацию).

Промывка происходит в несколько этапов, там есть свои важные нюансы. Рекомендую изучить данный материал.

После завершения очередной промывки фильтр снова готов к работе. Загрузка фильтра при правильной эксплуатации обычно «живет» (работает) от 3-5 лет.

Окисление и фильтрация пиролюзитом (MnO2).

Этот метод прекрасно подходит для удаления небольшого количества двухвалентного железа Fe(OH)3 в простых условиях и для небольшого расхода воды. Высокий pH, отсутствие органики и сероводорода в воде — обязательные условия. Суть метода в том, чтo мы окисляем железо с помощью волшебного компонента загрузки фильтра без аэрации, без дозации, без озона, без реагентов — только обезжелезиватель с загрузкой: сорбент + пиролюзит.

Пиролюзит — это природный минерал. Диоксид марганца. Его применяют для производства батареек. Из него делают марганцовку (KMnO4) и вообще он довольно широко применяется в химической промышленности. В водоподготовке пиролюзит MnO2 используется, как каталитический материал удаления железа, марганца, органический соединений, сероводорода, потому что пиролюзит является неплохим окислителем.

Пиролюзит в водоподготовке — материал уникальный. Почти все каталитические материалы сделаны с использованием пиролюзита:

BIRM — это легкий сложнопористый алюмосиликат с нанесением пиролюзита в качестве наружнего каталитического слоя. Идея — супер, но живет не долго и боится органики.

Greensand Plus — кварцевый песок с нанесением пиролюзита на поверхность крупиц. Работает только при постоянной дозации гипохлорита или промывке марганцовкой.

МЖФ, МСК, Pyrolox, Сорбент МС и множество других материалов — все это сделано с применением пиролюзита.

Обезжелезиватель на пиролюзите. Умягчитель — опция. Его может и не быть.

При этом пиролюзит — это минерал, содержащий 75-95% MnO2, он поставляется гранулированным, подходящей фракции. Дешевый, но очень тяжелый. Для его промывки требуется быстрый поток воды. Чем больше диаметр колонны, тем больше требуется давление в системе для создания потока нужной скорости для ожижения загрузки.

Однако, пиролюзит можно использовать, как реагентную добавку к сорбенту МС для удаления без окисления небольшого количества железа и марганца. У Вас одна колонна — обезжелезиватель с загрузкой — сорбент + пиролюзит. Без реагентов. Без аэрации или другого вида окислителя. Эта система в некоторой степени уникальна. Никакой другой материал, кроме пиролюзита не способен годами окислять металлы растворенные в воде без активного окисления или реагентной регенерации. Потому что мы используем не продукты, содержащие пиролюзит (BIRM, Greensand, МЖФ и т.п.), а собственно, сам пиролюзит. В процессе эксплуатации он практически не расходуется, может немного «пылить» — давать серую воду — истираясь вымываться в водопровод в режиме фильтрации, но это касается не только пиролюзита, а всех вообще загрузок. Можно поставить угольный фильтр с картриджем на выходе, чтобы избежать попадания частиц пиролюзита в водопровод и я рекомендую устанавливать систему обратного осмоса для получения питьевой воды на кухне, т.к. при некоторых дополнительных условиях пиролюзит может отдавать марганец потребителю, возможно незначительное превышение ПДК.

Условия использования ПИРОЛЮЗИТА в качестве окислителя железа:

Если водоснабжение дома организовано при помощи скважины или колодца, то может потребоваться дополнительная система очистки воды от марганца и железа. Из чего она состоит и как ее смонтировать?

На избыток марганца и железа в воде указывают желтые пятна на выстиранной одежде, металлический вкус воды и желтоватые потеки на умывальнике, ванной. Излишек марганца и железа чреват рядом неприятных последствий:

  • Нарушениями в работе желудочно-кишечного тракта;
  • Ухудшением вкусовых качеств воды;
  • Изменением свойств воды (мутность, изменение цвета);
  • Потеки желтого и бурого цветов на эмалированной поверхности сантехники;
  • Желтоватый цвет белого белья и одежды после стирки;
  • Зарастание труб водопровода марганцевыми и железистыми бактериями.

Чаще всего такие сложности возникают при организации водоснабжения глубинным способом: скважинами разной глубины, колодцами. Иногда причина избытка железа и марганца – стоки горнодобывающих предприятий, использование с/х удобрений, производство керамики неподалеку от вашего участка.

Согласно государственным санитарным нормам в питьевой воде из глубинных источников уровень железа не должен превышать 1мг на дм, а марганца 0,5 мг на дм. Перед тем, как выбирать очистительную систему и фильтрующий материал, необходимо сделать анализ воды из вашего источника. Провести анализ можно в частной лаборатории, лаборатории местной санэпидемстанции или на предприятии, которое занимается водоснабжением вашего района. Анализ важен, так как помогает определить количество элементов в воде, их валентность и уровень кислотности воды, насыщенность другими элементами – он является обязательным условием для правильного выбора фильтрующего материала, комплектации водоочистительной системы и ее мощности.

Принцип работы фильтрационной системы

Чтобы придать железу нерастворимую в воде форму его окисляют и удаляют из воды абсорбентами и фильтрами. Марганец удаляют точно так же. Вода проходит через очистительную систему: через аэратор, который насыщает воду кислородом, поступает в фильтрующую колонну. Материал фильтра (каталитический или песчаный) вступает в реакцию с элементами марганца и железа – проходит реакция окисления и адсорбции. Элементы приобретают нерастворимую в воде форму и оседают на фильтре.

очистка воды от железа и марганца из скважины

Окисленные соединения оседают на фильтре, поэтому его необходимо регулярно чистить. Для очистки фильтрационного материала воду в системе под сильным давлением (в 1,5-2 раза выше обычного) пропускают в обратном направлении. Воду от промывки удаляют из системы в канализацию.

Если вода кроме марганца и железа в высокой концентрации содержит еще аммиак или сероводород, или уровень кислотности ниже рН 7,5 в систему включают бак с раствором для регенерации фильтрующего материала.

Варианты обустройства очистительной системы

Какой именно вариант и комплектацию очистительной системы выбрать можно решать только после анализа воды. Ниже варианты организации системы при разных составах и кислотности воды.

очистка воды от железа и марганца из скважины

Уровень кислотности воды более рН 7, марганец в норме, а превышение содержания железа незначительное. При таких условиях достаточно аэрации и очистки через песчаный фильтр. Если превышен еще и уровень марганца, то дополнительно используется каталитический фильтрующий материал.

очистка воды от железа и марганца из скважины
Вариант очистительной системы с емкостью для регенерирующего состава. Применяется при пониженной кислотности воды с превышенным уровнем магния и железа, наличии в воде аммиака.

очистка воды от железа и марганца из скважины

Вариант обустройства очистительной системы при наличии в системе водоснабжения насосной станции.

Оборудование и материалы для фильтрации

Фильтрующий бак (колонна) – выпускают из усиленного стекловолокном пластика, реже – из эпоксидных составов. Диаметр колон 20,34 – 33 см, высота – 1,6-2 м. Производительность – от 0,5-2 м^3/час.

Клапан управления (управляющая головка) – выпускают автоматические электромеханические, электронные и механические.

Если используется фильтрационный материал регенерируемый перманганатом калия – нужен автоматический клапан управления!

Автоматические клапаны обычно снабжены программируемым контроллером времени – они включают в заданное время (каждые 4-7 дней) промывку фильтрующего материала. Более дорогие модели включаются автоматически после того как через них пройдет определенный объем воды.

Автоматические клапаны работают под напряжением от стандартной электросети, некоторые снабжены трансформатором.

очистка воды от железа и марганца из скважины

Механические (самые простые) управляющие клапаны – это система запорных кранов. Такие клапаны требуют вашего непосредственного участия в процессе управления и контроля. Они значительно дешевле (в5-6 раз) автоматических, но вам нужно будет самостоятельно каждые 4-7 дней включать промывку, чтобы система работала бесперебойно.

Аэратор (эжектор, аспиратор) – насадка для забора воздуха. Обязательный элемент системы, так как окисление марганца и железа проходит под действием кислорода. Устанавливается перед фильтрующим баком. Рекомендуют также между аэратором и фильтром устанавливать так называемую контактную емкость (гидрофорный бак без диафрагмы) – это продлевает время контакта элементов с кислородом, соответственно, их окисляется больше. В системах, где используют гидрофорный бак с диафрагмой можно устанавливать компрессор. Это позволяет подавать воздух прямо в фильтр.

Фильтрующие материалы (засыпки) – фасуют в мешки. Выбирать его следует только с учетом состава воды. Выпускают однокомпонентные материалы и смеси.

Монтаж очистительной системы поэтапно

Перед системой очистки обязательно установите механический фильтр – он уберет из воды твердые частицы.

  1. Разрабатывают схему системы очистки воды с учетом ее состава. В этом вам помогут специалисты фирмы, в которой вы будете приобретать комплектующие. Для того, чтобы получить исчерпывающую консультацию приходите с готовым анализом воды с вашего участка.
  2. Выберите место для обустройства системы (1,5-2 м^2). Должен быть доступ к канализации, водоснабжению и электросети. Обычно систему обустраивают в подвале или подсобном помещении.
  3. Устанавливают фильтрационный бак (колонну) и заполняют его фильтрующим материалом на 2/3.
  4. На фильтрационный бак монтируют клапан управления.
  5. Трубопроводом соединяют элементы системы очистки и подключают их к домашнему водоснабжению. Трубы выбирают такие же, что и в системе водоснабжения дома.
  6. Устанавливают запорную арматуру (краны или вентили) на обводном трубопроводе – это позволит отключать или демонтировать фильтр без отключения всей системы водоснабжения дома.
  7. Монтируют от фильтра в канализацию слив – для отвода воды после промывания фильтрационного материала.
  8. Монтируют (при наличии в схеме) емкость для регенерирующего раствора.
  9. Систему очистки подключают к электросети.

Не обязательно направлять через фильтр весь поток – можно сделать отвод для воды, которая будет использоваться для полива или мытья автомобиля. Нельзя использовать для полива растений на участке воду после промывки фильтрующего материала.

Очистка воды в частном доме, а именно вся система челиком стоит от 5 тыс. грн. Стоимость увеличивается с производительностью фильтра, сложностью управляющего клапана, используемого материала и рассчитывается индивидуально.

Чтобы продлить срок службы системы и обеспечить ее правильное функционирование придерживайтесь рекомендаций производителя и вовремя проводите промывание фильтрующего материала.

очистка воды от железа и марганца из скважины

Текущие санитарные нормы ограничивают предельно допустимое содержание марганца в хозяйственной и питьевой воде – допустимая норма составляет 0,1 мг/л. В некоторых европейских странах требования еще жестче – до 0,05 мг/л. Если содержание элемента выше, страдают органолептические свойства воды, появляется неприятный привкус, на сантехнике образуются характерные пятна, а на трубах собирается осадок (он имеет вид черной пленки). В подземных водах элемент содержится в виде растворимых солей Mn2+. Чтобы очистить воду от марганца, его сначала нужно перевести окислением в нерастворимое состояние, после чего начнутся процессы гидролизации с образованием нерастворимых гидроксидов Mn(OH)3, Mn(OH)4. При осаждении на загрузке фильтра начинает проявлять каталитические свойства, ускоряя окисление двухвалентного марганца кислородом. Для эффективного окисления элемента кислородом нужно, чтобы значение рН воды, которая проходит очистку, находилось в районе 9.5-10.0. Перманганат калия, гипохлорит натрия или хлор, озон позволяют вести процессы демаганации при меньших показателях рН – например, 8.0-8.5. Для окисления 1 мг марганца, растворенного в воде, требуется около 0.291 мг кислорода.

Очистка воды от железа и марганца: обезжелезивание и деманганация (удаление марганца). Нужно ли очищать воду из скважины

Железо и марганец – самые распространенные загрязнители водных источников. Вода просачивается через грунтовые минеральные отложения и насыщается катионами данных металлов. Если норма железа превышается, то и содержание марганца часто оказывается критическим. Для исправления ситуации проводится деманганация (процесс удаления марганца из воды).

Марганец, как и железо, может пребывать в двух состояниях – растворенном и окисленном. В подземных источниках кислорода нет, поэтому марганец содержится в них в растворенном виде. Для удаления его из воды в данном случае применяются те же методики, что при обезжелезивании. То есть сначала нужно будет окислить марганец, а затем уже убрать взвеси из воды.

Важность очистки воды от марганца

Избыток марганца придает воде характерный желтый оттенок и вяжущий привкус. От такой воды на трубах и сантехнике появляются темные пятна и черные наросты. Но главное даже не это, а то, что постоянное употребление в пищу тяжелых металлов чревато очень неприятными последствиями (они склонны накапливаться). Негативно влияет избыток марганца на работу ЦНС, состояние сердечно-сосудистой системы и скелета. Во время беременности данный элемент особенно опасен, поскольку он сказывается на развитии ребенка.

Современные способы (методы) и процесс глубокой очистки воды из скважины от марганца. Оборудование и материалы для фильтрации

Важнейшее условие качественной очистки водных масс от марганца – требуемый уровень водородного значения рН, поскольку из-за химического состава окисление данного элемента (в отличие от обычного железа) происходит сложнее. При показателе от pH 7.5 ионы марганца принимают нерастворенную форму, а если он ниже 7.0, эффективное удаление элемента становится просто невозможным. В данном случае в целях повышения водородного показателя могут использоваться фильтры корректоры pH с кальцитом – зернистыми мраморными фракциями.

Для дальнейшей очистки потребуется окислитель, поскольку содержащегося в воде элемента обычно оказывается недостаточно. Решить проблему помогают эжекторы-аэраторы.

Очистка воды от марганца с применением обезжелезивателя

В грунтовых водах, в которых кислорода нет вообще, марганец присутствует в двухвалентной растворенной форме. Чтобы удалить его из воды, сначала нужно будет произвести окислительные реакции, а потом фильтрацию. Хорошие результаты показывают фильтры-обезжелезиватели.

Очистка воды от марганца с применением фильтра комплексной очистки

Фильтры комплексной очистки стоят дороже остальных решений, зато эффективно удаляют марганец при любых заданных значениях pH. Насыщать воду кислородом при этом не требуется. Многокомпонентная фильтрующая среда комплексных установок также гарантирует эффективную очистки воды от железа, солей жесткости, органики и прочих примесей, которые в ней растворены. Данный вид водоочистки очень эффективен в удалении марганца из колодезной и скважинной воды. Один такой фильтр заменяет сразу несколько устройств разного назначения.

Очистка воды от марганца с применением накопительных баков

Также удаление марганца из колодезной воды может производиться с применением накопительных баков. Сначала в целях лучшего окисления выполняется корректировка водородного показателя кальцитом (его засыпают на дно колодца либо в накопительный газ). Окислительные процессы запускает аэрационное устройство – эжектор. После прохождения эжектора насыщенная воздухом вода поступает в накопительную емкость, где продолжаются окислительные реакции. Затем вода начинает подаваться насосной станцией на фильтр промывной титановой мембраны. Частики марганца от 0.1 микрон, которые не смогли раствориться, удерживаются поверхность мембраны.

Принципы работы фильтрационной системы и удаление марганца из воды

На первой стадии очистки из воды вакуумом убирают свободную углекислоту, в результате чего рН повышается до 8.0-8.5. Упрощает выполнение работ вакуумно-эжекционный аппарат, в эжекционной части которого происходит диспергирование воды с последующим насыщением кислородом воздуха. Затем вода подается на фильтрацию через зернистую загрузку (это может быть кварцевый песок или другой материал). Данный метод очистки применим при перманганатной окисляемости до 9.5 мгО/л. В воде обязательно присутствует двухвалентное железо, при окислении которого получается гидроксид железа, адсорбирующий и каталитически окисляющий Mn2+. Соотношение концентраций / меньше 7/1 быть не должно. Если в исходной водной среде такое соотношение достичь не получается, в нее добавляют сульфат железа.

Очистка воды от марганца перманганатом калия

Методика применима для поверхностных и подземных вод. При введении перманганата калия в воду растворенный марганец окисляется, в результате образуется малорастворимый оксид марганца. Осажденный оксид в виде хлопьев имеет значительную развитую удельную поверхность – около 300 м2 на 1 г осадка. Осадок – отличный катализатор, который позволяет проводить демангацию при рН около 8.5. Для удаления Mn2+ в количестве 1 мг нужно 1.92 мг перманганата калия. Как мы уже писали выше, перманганат калия убирает из воды и марганец, и железо в любых формах. Также удаляются неприятные запахи, за счет сорбционных свойств повышают вкусовые качества воды. Практические данные относительно очистки воды от марганца с применением перманганата калия показывают – нужно использовать 2 мг вещества на каждый 1 мг марганца, процент окисления будет составлять до 97%. Mn2+. После перманганата для удаления продуктов окисления, взвешенных веществ вводят коагулянт. Затем вода фильтруется на установке песчаной загрузки. При очистке подземных вод от марганца параллельно с перманганатом вводят активированную кремниевую кислоту либо флокулянты. Это позволяет увеличить хлопья оксида марганца в размерах.

Очистка воды от марганца каталитическим способом

При очистке воды от марганца и железа предварительное осаждение оксидов на поверхность зерен фильтра оказывает каталитическое воздействие на процесс окисления двухвалентного марганца кислородом (кислород используется растворенный). В процессе фильтрации предварительно аэрированной и, если это нужно, то подщелоченной воды на зернах фильтра песчаной загрузки образуется осадок гидроксида марганца Mn(OH)4. Ионы Mn2+ адсорбируются гидроксидом марганца и гидролизуются с получением Mn2O3. Последний элемент окисляется до Mn(OH)4 растворенным кислородом и снова принимает участие в каталитическом окислении. Как любой классический катализатор, элемент Mn(OH)4 практически не расходуется.

Очистка воды от марганца на модифицированной загрузке

Для увеличения рабочего ресурса фильтрующей загрузки за счет крепления пленки катализатора из оксида марганца и гидроксидов железа на поверхности зерен, для уменьшения расхода перманганата калия чаще всего используется именно модифицированная До начала процесса фильтрования через фильтрующую загрузку пропускают сначала раствор железного купороса (FeSO4) с перманганатом калия, потом загрузку обрабатывают тринатрийфосфатом (формула Na3PO4) либо сульфитом натрия (Na2SO3). Ориентировочная скорость фильтрации воды будет составлять 8-10 м/час. Каталитическую пленку можно сделать точно так же, пропуская 0.5%-ный раствор хлорида марганца с перманганата калия через загрузку фильтра.

Очистка воды от марганца введением реагентом

Скорость окисления двухвалентного марганца хлором, диоксидом хлора, озоном либо гипохлоритом натрия зависит от показателя рН исходной воды. При введении гипохлорита натрия либо хлора эффект окисления достигается в полной мере при рН от 8.0-8.5 и времени контакта воды с окислителем один-полтора часа. В большинстве случаев обрабатываемая вода подщелачивается. Требуемая доза реагента для перевода Mn2+ в Mn4+ составляет 1.3 мг на каждый миллиграмм двухвалентного растворенного марганца. Фактические дозы будут выше.

Очистка воды от марганца диоксидом хлора или озоном

Данный тип обработки является одни из наиболее эффективных. Процесс окисления марганца занимает всего 10-15 минут при значении рН 6.5-7.0. Доза озона согласно стехиометрии составляет 1.45 мг, диоксида хлора – 1.35 мг на милиграмм двухвалентного марганца. Но поскольку озон подвергается каталитическому разложению оксидами марганца, доза должна быть увеличена. Все указанные количества KMnO4, ClO2, O3 верны, но они чисто теоретические. Практические дозы окислителей зависят от рН, срока контакта окислителя и воды отложений, содержания органических примесей и других показателей.

Очистка воды от марганца ионным обменом

Очистка воды от марганца способом ионного обмена, как и железа, происходит при водород и натрий катионировании. Методика целесообразна при необходимости глубокого умягчения, обезжелезивания и удаления марганца.

В каких случаях нужна очистка воды от железа и марганца

О высоком содержании марганца в воде свидетельствуют потеки коричнево-желтого цвета на сантехнике, желтизна на одежде, металлический привкус. Но это критерии, которые определяются на глаз, а есть еще и санитарные нормы. Они определяют предельно допустимые параметры содержания марганца в воде, даже если потеков, пятен и металлического вкуса нет, фильтрация является обязательной.

Откуда берутся железо и марганец в воде?

Железо и марганец в воду попадают из горных пород, стоков промышленных предприятий, удобрений. В природе элементы существуют в двух- и трехвалентной формах.

Фильтры для очистки воды от железа и марганца: основные материалы

Рассмотрим самые распространенные фильтрующие материалы, используемые для удаления марганца:

  1. Упаковки с фильтрами Birm. Устройства устанавливаются под аэраторами.
  2. Bewaclean – аналогичное предыдущему решение. Дополнительно данный фильтр регулирует кислотность очищаемой воды.
  3. Green sand – помимо марганца и железа, фильтр удаляет еще и сероводород. Для регенерации используется перманганат калия.
  4. МТМ – более компактный аналог Greensand с pH 6.2- 8.5.
  5. Pyrolox – минеральная форма марганца диоксида. Химической регенерации не требует.

Любой фильтрующий материал время от времени нужно очищать, пропуская по нему воду в обратном обычному направлению с высокой скоростью. Воду после промывки использовать в пищевых и питьевых целях нельзя.

Современные системы очистки воды для коттеджа, квартиры, дома и дачи. Варианты обустройства очистительной системы

В квартире, доме или на даче для удаления марганца удобнее всего использовать следующие системы:

  1. Фильтры с ионообменным картриджем.
  2. Фильтры обратного осмоса.
  3. Устройства каталитического окисления.
  4. Отстаиватели.

Каждый вариант имеет свои особенности, недостатки и стоимость. Перед принятием окончательного решения о выборе рекомендуем проконсультироваться со специалистами.

Каталог сайтов Всего.ру
Оцените статью
Всё об отоплении и строительстве
Добавить комментарий