Нормы пропускной способности медных и алюминиевых проводов и кабелей

Содержание

нормы пропускной способности медных и алюминиевых проводов и кабелей

Упрощенная таблица для выбора сечения проводника по номинальной мощности

Таблица зависимости мощности от сечения провода была разработана специально для новичков в вопросах электротехнике. Вообще выбор сечения провода зависит не только от мощности подключаемых нагрузок, но и от массы других параметров.

В одной из главных книг любого электрика – ПУЭ, правильному выбору сечения проводов посвящен целый пункт. И именно на основании него написана наша инструкция, которая должна помочь вам в нелегкой задаче выбора сечения проводов.

Как правильно выбирать сечение провода

Почему нельзя пользоваться таблицами мощности

Прежде всего вы должны знать, что любая таблица зависимости сечения провода от мощности не может противоречить ПУЭ. Ведь именно на основании этого документа осуществляют свой выбор не только профессионалы, но и конструкторские бюро.

Поэтому все те таблицы и видео, которые вы во множестве можете найти в сети интернет, предлагающие осуществлять выбор именно по мощности, являются своеобразным усредненным вариантом.

Итак:

  • Практически любая таблица сечений проводов по мощности предлагает вам выбрать провод, исходя из активной мощности прибора или приборов. Но, те кто хорошо учился в школе должны помнить, что активная мощность — это лишь составная часть полной мощности, которая кроме того содержит реактивную мощность.

нормы пропускной способности медных и алюминиевых проводов и кабелей

Что такое cosα

  • Отличаются эти составные части на cosα. Для большинства электрических приборов этот показатель очень близок к единице, но для таких устройств как трансформаторы, стабилизаторы, разнообразная микропроцессорная техника и тому подобное он может доходить до 0,7 и меньше.
  • Но любая таблица сечения провода по мощности не точна не только из-за того, что не учитывает полную мощность. Есть и другие важные факторы. Так, согласно ПУЭ, выбор проводников напряжением до 1000В должен осуществляться только по нагреву. Согласно п.1.4.2 ПУЭ, выбор по токам короткого замыкания для таких проводов не является обязательным.
  • Для того, чтобы выбрать сечение провода по нагреву, следует учитывать следующие параметры: номинальный ток, протекающий через провод, вид провода – одно-, двух- или четырехжильный, способ прокладки провода, температура окружающей среды, количество прокладываемых проводов в пучке, материал изоляции провода и, конечно, материал провода. Не одна таблица нагрузочной способности проводов не способна совместить такое количество параметров.

Выбор сечения провода по номинальному току

Конечно, совместить все эти параметры в одной таблице сложно, а выбирать как-то надо. Поэтому, дабы вы могли произвести выбор своими руками и головой, мы предлагаем вам основные аспекты выбора в сокращенном варианте.

Мы отбросили все параметры выбора сечения для высоковольтных кабелей, малоиспользуемых проводов и оставили только самое важное.

Итак:

  • Так как в ПУЭ используется таблица выбора сечения провода по току, то нам необходимо узнать, какой ток будет протекать в проводе при определенных значениях мощности. Сделать это можно по формуле I=P /U× cosα, где I – наш номинальный ток, P – активная мощность, cosα – коэффициент полной мощности и U – номинальное напряжение нашей электросети (для однофазной сети оно равно 220В, для трехфазной сети оно равно 380В).

нормы пропускной способности медных и алюминиевых проводов и кабелей

На фото представлена таблица выбора сечения провода из ПУЭ для алюминиевых проводников

  • Возникает закономерный вопрос, где взять показания cosα? Обычно он указан на всех электроприборах или его можно вывести, если указана полная и активная мощность. Если расчёт ведется для нескольких электроприборов, то обычно принимается средняя либо рассчитывается номинальный ток для каждого из них.

Обратите внимание! Если у вас не получается узнать cosα для каких-то приборов, то для них его можно принять равным единице. Это, конечно, повлияет на конечный результат, но дополнительный запас прочности для нашей проводки не повредит.

  • Зная нагрузки для каждой из планируемых групп нашей электросети, таблица зависимости сечения провода от тока, приведенная в ПУЭ, может быть использована нами. Только для правильного пользования следует остановиться еще на некоторых моментах.
  • Прежде всего следует определиться с проводом, который мы планируем использовать. Вернее, нам следует определиться с количеством жил. Кроме того, следует определиться со способом прокладки провода. Ведь при открытом способе прокладки провода интенсивность отвода тепла от него значительно выше, чем при прокладке в трубах или гофре. Это учитывается в таблицах ПУЭ.

нормы пропускной способности медных и алюминиевых проводов и кабелей

Таблица выбора сечения провода для медных проводников

Обратите внимание! При выборе количества жил провода в расчет не принимаются нулевые и защитные жилы.

  • Кроме того, таблица сечения провода по току поможет вам определиться с выбором материала для проводки. Ведь, исходя из получающихся результатов, вы можете оценить какой материал вам лучше принять.

Обратите внимание! Производя выбор сечения провода, всегда выбирайте ближайшее большее значение сечения. Кроме того, если вы собираетесь монтировать новую проводку к старой, то учитывайте, что, согласно п.3.239 СНиП 3.05.06 – 85, старые клеммные колодки не позволят использовать провод сечением больше 4 мм2.

Дополнительные аспекты выбора сечения провода

Но когда рассматривается таблица зависимости тока от сечения провода, нельзя забывать и об условиях, в которых проложен провод. Поэтому если у вас имеют место быть условия не благоприятные по условиям нагрева провода, то стоит обратить внимание на дополнительные аспекты.

нормы пропускной способности медных и алюминиевых проводов и кабелей

Таблица поправочных температурных коэффициентов

  • Прежде всего, это температура окружающей среды. Если она будет отличаться от среднестатистических +15⁰С, исходя из которых выполнен расчет в таблицах ПУЭ, то вам следует внести поправочные коэффициенты. Сводную таблицу этих коэффициентов вы найдете ниже.
  • Также таблица нагрузки и сечения проводов по п.1.3.10 ПУЭ требует введение поправочных коэффициентов при совместной прокладке нагруженных проводов в трубах, лотках или просто пучками. Так, для 5-6 проводов, проложенных совместно, этот коэффициент составляет 0,68. Для 7-9 он будет 0,63, и для большего количества он равен 0,6.

Вывод

Надеемся, наша таблица нагрузки медных и алюминиевых проводов поможет вам определиться с выбором. А предложенная нами методика позволит даже не профессионалу сделать правильный выбор.

Ведь цена ошибки может быть очень велика. Чего стоит только статистика пожаров, случившихся из-за короткого замыкания. А причина в большинстве случаев — не отвечающая нормам по нагреву проводка.

Выбор сечения кабелей и проводов является обязательным и очень важным пунктом при монтаже и проектировании схемы любой электрической установки.
Для правильного выбора сечения силового провода необходимо учитывать величину максимально потребляемого нагрузкой тока.

В общем виде порядок выбора сечения силовой линии питания можно определить следующим образом:

нормы пропускной способности медных и алюминиевых проводов и кабелей

При монтаже капитальных строений для прокладки внутренних силовых сетей допускается использование только кабелей с медными жилами (ПУЭ п. 7.1.34).

Питание электроприемников от сети 380/220 В должно выполняться с системой заземления TN-S или TN-C-S (ПУЭ п. 7.1.13), поэтому все кабели питающие однофазные потребители должны содержать три проводника:
          — фазный проводник
          — нулевой рабочий проводник
          — защитный (заземляющий проводник)

Кабели, питающие трехфазные потребители должны содержать пять проводников:
          — фазные проводники (три штуки)
          — нулевой рабочий проводник
          — защитный (заземляющий проводник)

Исключением являются кабели, питающие трехфазные потребители без вывода для нулевого рабочего проводника (например асинхронный двигатель с к. з. ротором). В таких кабелях нулевой рабочий проводник может отсутствовать.

Из всего многообразия кабельной продукции, представленной на современном рынке, жестким требованиям электро и пожаробезопасности соответствуют только два типа кабелей: ВВГ и NYM.

Внутренние силовые сети должны быть выполнены кабелем не распространяющим горение, то есть с индексом «НГ» (СП–110–2003 п. 14.5). Кроме того, электропроводки в полостях над подвесными потолками и в пустотах перегородок, должны быть с пониженным дымовыделением, на что указывает индекс «LS».

Общая мощность нагрузки групповой линии определяется как сумма мощностей всех потребителей данной группы. То есть для расчета мощности групповой линии освещения или групповой розеточной линии необходимо просто сложить все мощности потребителей данной группы.

Значения токов легко определить, зная паспортную мощность потребителей по формуле: I = Р/220.

1. Для определения сечения вводного силового кабеля необходимо подсчитать суммарную мощность всех планируемых к использованию энергопотребителей и умножить ее на коэффициент 1,5. Еще лучше – на 2, чтобы создать запас прочности.

2. Как известно, проходящий через проводник электрический ток (а он тем больше, чем больше мощность питаемого электроприбора) вызывает нагрев этого проводника. Допустимый для наиболее распространенных изолированных проводов и кабелей нагрев составляет 55-75°С. Исходя из этого и выбирается сечение жил вводного кабеля. Если подсчитанная общая мощность будущей нагрузки не превышает 10 — 15 кВт, достаточно использовать медный кабель с сечением жилы 6 мм2, алюминиевый – 10 мм2. При увеличении мощности нагрузки вдвое сечение увеличивается втрое.

3. Приведенные цифры справедливы для однофазной открытой прокладки силового кабеля. Если он прокладывается скрыто, сечение увеличивается в полтора раза. При трехфазной проводке мощность потребителей может быть увеличена вдвое, если прокладка открытая, и в 1,5 раза при скрытой прокладке.

4. Для электропроводки розеточных и осветительных групп традиционно используют провода, имеющие сечение 2,5 мм2 (розетки) и 1,5 мм2 (освещение). Поскольку многие кухонные приборы, электроинструменты и отопительные приборы являются очень мощными потребителями электроэнергии, их положено запитывать отдельными линиями. Здесь руководствуются следующими цифрами: провод, обладающий сечением 1,5 мм2, способен «потянуть» нагрузку в 3 кВт, сечением 2,5 мм2 – 4,5 кВт, для 4 мм2 допустимая мощность нагрузки уже 6 кВт, а для 6 мм2 – 8 кВт.

Зная суммарный ток всех потребителей и учитывая соотношения допустимой для провода токовой нагрузки (открытой проводки) на сечение провода:

для медного провода 10 ампер на миллиметр квадратный,

для алюминиевого 8 ампер на миллиметр квадратный, можно определить, подойдет ли имеющийся у вас провод или же необходимо использовать другой.

При выполнении скрытой силовой проводки (в трубке или же в стене) приведенные значения уменьшаются умножением на поправочный коэффициент 0,8.

Следует отметить, что открытая силовая проводка обычно выполняется проводом с сечением не менее 4 мм2 из расчета достаточной механической прочности.

Приведенные выше соотношения легко запоминаются и обеспечивают достаточную точность для использования проводов. Если требуется с большей точностью знать длительно допустимую токовую нагрузку для медных проводов и кабелей, то можно воспользоваться нижеприведенными таблицами.

В следующей таблице сведены данные мощности, тока и сечения кабельно-проводниковых материалов для расчетов и выбора защитных средств, кабельно-проводниковых материалов и электрооборудования.

нормы пропускной способности медных и алюминиевых проводов и кабелей

Допустимый длительный ток для проводов и шнуров
с резиновой и ПХВ изоляцией с медными жилами

нормы пропускной способности медных и алюминиевых проводов и кабелей

Сечение жилы

Нормальное применение

Предельно допустимые значения
(темп-ра жил +65 °С, воздуха +25 °С )

       

мм2

В кабельных коробах

Открыто

Открыто

В кабельном коробе двух одножильных

В кабельном коробе четырех одножильных

В кабельном коробе одного трехжильного

 

А

А

А

А

А

А

Допустимый длительный ток для проводов с резиновой
и ПХВ изоляцией с алюминиевыми жилами

нормы пропускной способности медных и алюминиевых проводов и кабелей

Допустимый длительный ток для проводов с медными жилами
с резиновой изоляцией в металлических защитных оболочках и кабелей
с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной,
найритовой или резиновой оболочке, бронированных и небронированных

нормы пропускной способности медных и алюминиевых проводов и кабелей

Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией
в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных

Примечание. Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по данной таблице как для трехжильных кабелей, но с коэффициентом 0,92.

Сводная таблица
сечений проводов, тока, мощности и характеристик нагрузки

В таблице приведены данные на основе ПУЭ, для выбора сечений кабельно-проводниковой продукции, а также номинальных и максимально возможных токов автоматов защиты, для однофазной бытовой нагрузки чаще всего применяемой в быту

Наименьшие допустимые сечения кабелей и проводов электрических сетей в жилых зданиях
Рекомендуемое сечение силового кабеля в зависимости от потребляемой мощности:

— Медь, U = 220 B, одна фаза, двухжильный кабель

Р, кВт
I, A
Сечение токопроводящей жилы, мм2
Макс. допустимая длина кабеля при указанном сечении, м*

— Медь, U = 380 B, три фазы, трехжильный кабель

Р, кВт
I, A
Сечение токопроводящей жилы, мм2
Макс. допустимая длина кабеля при указанном сечении, м*

* величина сечения может корректироваться в зависимости от конкретных условий прокладки кабеля

Мощность нагрузки в зависимости от номинального тока
автоматического выключателя и сечения кабеля

Наименьшие сечения токопроводящих жил проводов и кабелей в электропроводках

 

Сечение жил, мм2

Проводники

медных

алюминиевых

Шнуры для присоединения бытовых электроприемников

Кабели для присоединения переносных и передвижных электроприемников в промышленных установках

Скрученные двухжильные провода с многопроволочными жилами для стационарной прокладки на роликах

Незащищенные изолированные провода для стационарной электропроводки внутри помещений:

   

непосредственно по основаниям, на роликах, клицах и тросах

на лотках, в коробах (кроме глухих):

   

для жил, присоединяемых к винтовым зажимам

для жил, присоединяемых пайкой:

   

однопроволочных

многопроволочных (гибких)

на изоляторах

Незащищенные изолированные провода в наружных электропроводках:

   

по стенам, конструкциям или опорам на изоляторах;

вводы от воздушной линии

   

под навесами на роликах

Незащищенные и защищенные изолированные провода и кабели в трубах, металлических рукавах и глухих коробах

Кабели и защищенные изолированные провода для стационарной электропроводки (без труб, рукавов и глухих коробов):

   

для жил, присоединяемых к винтовым зажимам

для жил, присоединяемых пайкой:

   

однопроволочных

многопроволочных (гибких)

Защищенные и незащищенные провода и кабели, прокладываемые в замкнутых каналах или замоноличенно (в строительных конструкциях или под штукатуркой)

Сечения проводников и защитные меры электробезопасности в электроустановках до 1000В

Щелкните мышкой по изображению чтобы увеличить.

Таблица выбора сечения кабеля для оповещателей СОУЭ

Скачать таблицу с формулами расчета — Пожалуйста Войдите или Зарегистрируйтесь для доступа к этому контенту

Выбор сечения жилы кабельной линии СОУЭ для рупорных громкоговорителей
Выбор сечения кабеля для речевого оповещения
Применение огнестойких кабелей в системах АПЗ

Благодаря своим частотным характеристикам огнестойкте кабели марок КПСЭнг-FRLS КПСЭнг-FRHF КПСЭСнг-FRLS КПСЭСнг-FRHF могут быть использованы в качестве:

  • шлейфов для адресно-аналоговых систем пожарной сигнализации;
  • кабелей приёма-передачи данных между приборами контрольными пожарными пожарной сигнализации и приборами управления системы противопожарной защиты;
  • интерфейсного кабеля систем оповещения и управления эвакуацией (СОУЭ);
  • кабеля управления систем автоматического пожаротушения;
  • кабеля управления систем противодымной защиты;
  • интерфейсного кабеля других систем противопожарной защиты.

В качестве справочной информации ниже приведены значения волновых сопротивлений и частотные характеристики различных марко-размеров огнестойких кабелей.

1 КПСЭнг – FRLS 1х2х0.5
КПСЭнг – FRHF 1х2х0.5
120±20 100±15
2 КПСЭнг – FRLS 1х2х0.75
КПСЭнг – FRHF 1х2х0.75
110±15 90±10
3 КПСЭнг – FRLS 1х2х1.0
КПСЭнг – FRHF 1х2х1.0
100±15 80±10
4 КПСЭнг – FRLS 1х2х1.5
КПСЭнг – FRHF 1х2х1.5
90±10 70±10
5 КПСЭнг – FRLS 1х2х2.5
КПСЭнг – FRHF 1х2х2.5
80±10 60±5
КПСЭнг – FRLS 1х2х0.5
КПСЭнг – FRHF 1х2х0.5
0,12 0,39 2,3 5,8 21,4
КПСЭнг – FRLS 1х2х0.75
КПСЭнг – FRHF 1х2х0.75
0,09 0,28 2,2 5,1 18,9
КПСЭнг – FRLS 1х2х1.0
КПСЭнг – FRHF 1х2х1.0
0,08 0,24 2,1 4,9 18,0
КПСЭнг – FRLS 1х2х1.5
КПСЭнг – FRHF 1х2х1.5
0,07 0,22 2,0 4,4 17,5
КПСЭнг – FRLS 1х2х2.5
КПСЭнг – FRHF 1х2х2.5
0,05 0,20 2,0 4,4 17,5

Общая сравнительная характеристика кабелей для локальной сети

Тип кабеля
(10 Мбит/с = около
1 Мб в сек)
Скорость передачи данных (мегабит в секунду) Макс официальная длина сегмента, м Макс неофициальная длина сегмента, м* Возможность восстановления при повреждении / наращивание длины Подверженность помехам Стоимость
Витая пара
Неэкранированная Витая пара 100/10/1000 Мбит/с 100/100/100 м 150/300/100 м Хорошая Средняя Низкая
Экранированная витая пара 100/10/1000 Мбит/с 100/100/100 м 150/300/100 м Хорошая Низкая Средняя
Кабель полевой П-296 100/10 Мбит/с —— 300(500)/>500 м Хорошая Низкая Высокая
Четырехжильный телефонный кабель 50/10 Мбит/с —— Не более 30 м Хорошая Высокая Очень низкая
Коаксиальный кабель
Тонкий коаксиальный кабель 10 Мбит/с 185 м 250(300) м Плохая Требуется пайка Высокая Низкая
Толстый коаксиальный кабель 10 Мбит/с 500 м 600(700) Плохая Требуется пайка Высокая Средняя
Оптоволокно
Одномодовое
оптоволокно
100-1000 Мбит До 100 км —- Требуется спец
оборудование
Отсутствует  
Многомодовое
оптоволокно
1-2 Гбит До 550 м —- Требуется спец
оборудование
Отсутствует  

*- Передача данных на расстояния, превышающие стандарты, возможна при использовании качественных комплектующих.

Выбор кабелей для систем видеонаблюдения

Чаще всего видеосигналы передаются между устройствами по коаксиальному кабелю. Коаксиальный кабель – это не только самый распространенный, но и самый дешевый, самый надежный, самый удобный и самый простой способ передачи электронных изображений в системах телевизионного наблюдения (СТН).

Коаксиальный кабель выпускается многими изготовителями с самыми разнообразными размерами, формами, цветами, характеристиками и параметрами. Чаще всего рекомендуют использовать кабели типа RG59/U, однако фактически это семейство включает кабели с самыми разнообразными электрическими характеристиками. В системах телевизионного наблюдения и в других областях, где применяются телекамеры и видеоустройства, также широко используются похожие на RG59/U кабели RG6/U и RG11/U.

Хотя все эти группы кабелей во многом похожи друг на друга, у каждого кабеля есть свои собственные физические и электрические характеристики, которые необходимо принимать во внимание.

Все три упомянутые группы кабелей относятся к одному и тому же общему семейству коаксиальных кабелей. Буквы RG означают «radio guide» (радиочастотный волновод), а числа обозначают различные виды кабеля. Хотя у каждого кабеля есть свой номер, свои характеристики и размеры, в принципе все эти кабели устроены и работают одинаково.

Устройство коаксиального кабеля

Наиболее распространенные кабели RG59/U, RG6/U и RG11/U имеют круглое сечение. В любом кабеле есть центральная жила, покрытая диэлектрическим изоляционным материалом, который, в свою очередь, покрыт токопроводящей оплеткой или экраном с целью защиты от электромагнитных помех (ЭМП). Наружное защитное покрытие поверх оплетки (экрана) называется оболочкой кабеля.

Два проводника коаксиального кабеля разделены непроводящим диэлектрическим материалом. Внешний проводник (оплетка) экранирует центральный проводник (жилу) от внешних электромагнитных помех. Защитное покрытие поверх оплетки предохраняет проводники от физических повреждений.

Центральная жила

Центральная жила – главное средство передачи видеосигнала. Диаметр центральной жилы обычно находится в пределах от 14 до 22 калибра по американскому сортименту проводов (AWG). Центральная жила либо медная целиком, либо стальная с медным покрытием (сталь, плакированная медью), в последнем случае жилу также называют неизолированным омедненным проводом (BCW, Bare Copper Weld). Центральная жила кабеля для систем СТН должна быть медной. Кабели, центральная жила которых не полностью медная, а только покрыта медью, имеют намного большее сопротивление контура на частотах видеосигнала, поэтому их нельзяприменять в системах СТН. Чтобы определить тип кабеля, посмотрите на сечение его центральной жилы. Если жила является стальной с медным покрытием, то ее центральная часть будет серебристого цвета, а не медного. От диаметра центральной жилы зависит активное сопротивление кабеля, то есть его сопротивление постоянному току. Чем больше диаметр центральной жилы, тем меньше ее сопротивление. Кабель с центральной жилой большого диаметра (а значит с меньшим сопротивлением) может передавать видеосигнал на большее расстояние с меньшими искажениями, но зато более дорог и менее гибок.

Если условия эксплуатации кабеля таковы, что он может часто изгибаться в вертикальном или горизонтальном направлении, выберите кабель с многожильным центральным проводником, который сделан из большого количества проводов малого диаметра. Многожильный кабель более гибкий по сравнению с одножильным и более стойкий с точки зрения усталости метала при изгибе.

Диэлектрический изоляционный материал

Центральная жила равномерно окружена диэлектрическим изоляционным материалом, обычно это полиуретан или полиэтилен. Толщина слоя этого диэлектрического изолятора одинакова по всей длине коаксиального кабеля, благодаря чему эксплуатационные характеристики кабеля по всей его длине одинаковы. Диэлектрики из пористого или вспененного полиуретана меньше ослабляют видеосигнал, чем диэлектрики из твердого полиэтилена. При расчете потерь по длине для любого кабеля желательны меньшие потери по длине. Кроме того, вспененный диэлектрик придает кабелю большую гибкость, которая облегчает работу монтажников. Но хотя электрические характеристики кабеля с вспененным диэлектрическим материалом более высоки, такой материал может поглощать влагу, которая ухудшает эти характеристики.

Твердый полиэтилен жестче и лучше сохраняет свою форму, чем вспененный полимер, более устойчив к защемлению и сдавливанию, но прокладывать такой жесткий кабель несколько труднее. Кроме того, потери сигнала на единицу длины у него больше, чем у кабеля с вспененным диэлектриком, и это нужно учитывать, если длина кабеля должна быть большой.

Оплетка, или экран

Снаружи диэлектрический материал покрыт медной оплеткой (экраном), которая является вторым (обычно заземленным) проводником сигналов между телекамерой и монитором. Оплетка служит экраном от нежелательных внешних сигналов, или наводок, которые обычно называют электромагнитными помехами (ЭМП) и которые могут неблагоприятно влиять на видеосигнал.

Качество экранирования от электромагнитных помех зависит от содержания меди в оплетке. Коаксиальные кабели рыночного качества содержат неплотную медную оплетку с экранирующим эффектом приблизительно 80%. Такие кабели пригодны для обычных случаев применения, когда электромагнитные помехи малы. Эти кабели хороши в тех случаях, когда они проложены в металлическом кабелепроводе или металлической трубе, которые служат дополнительным экраном.

Если условия эксплуатации не очень хорошо известны и кабель прокладывается не в металлической трубе, которая может служить дополнительной защитой от ЭМП, то лучше выбрать кабель с максимальной защитой от помех или кабель с плотной оплеткой, содержащей больше меди по сравнению с коаксиальными кабелями рыночного качества. Повышение содержания меди обеспечивает лучшее экранирование за счет большего содержания экранирующего материала в более плотной оплетке. Для систем СТН требуются медные проводники.

Кабели, в которых экраном служит алюминиевая фольга или оберточный фольговый материал, не пригодны для систем телевизионного наблюдения (СТН). Такие кабели обычно применяются для передачи радиочастотных сигналов в передающих системах и в системах распределения сигнала с коллективной антенны.

Кабели, в которых экран сделан из алюминия или фольги, могут искажать видеосигналы настолько сильно, что качество изображения упадет ниже уровня, требуемого в системах наблюдения, особенно в том случае, когда длина кабеля велика, поэтому такие кабели не рекомендуется применять в системах СТН.

Внешняя оболочка

Последним компонентом коаксиального кабеля является внешняя оболочка. Для ее изготовления используются различные материалы, но чаще всего поливинилхлорид (ПВХ). Поставляются кабели с оболочкой различных цветов (черные, белые, желтовато-коричневые, серые) – как для наружной установки, так и для установки в помещениях.

Выбор кабеля определяется также следующими двумя факторами: расположение кабеля (внутри помещения или снаружи) и его максимальная длина.

Коаксиальный видеокабель предназначен для передачи сигнала с минимальной потерей от источника с волновым сопротивлением 75 Ом к нагрузке с волновым сопротивлением 75 Ом. Если используется кабель с другим волновым сопротивлением (не 75 Ом), то возникают дополнительные потери и отражения сигналов. Характеристики кабеля определяются рядом факторов (материал центральной жилы, диэлектрический материал, конструкция оплетки и др.), которые следует тщательно учитывать при выборе кабеля для конкретного применения. Кроме того, характеристики передачи сигнала по кабелю зависят от физических условий вокруг кабеля и от метода прокладки кабеля.

Используйте только кабель высокого качества, выбирайте его, внимательно учитывая среду, в которой он будет работать (в помещении или снаружи). Для передачи видеосигналов лучше всего подходит кабель с медной однопроводной жилой, за исключением случая, когда требуется повышенная гибкость кабеля. Если условия эксплуатация таковы, что кабель часто изгибается (например, если кабель подсоединен к сканирующему устройству или камере, которая поворачивается по горизонтали и по вертикали), требуется специальный кабель. Центральный проводник в таком кабеле многожильный (скручен из тонких жил). Проводники кабеля должны быть сделаны из чистой меди. Не применяйте кабель, проводники которого сделаны из стали, плакированной медью, потому что такой кабель плохо передает сигнал на тех частотах, которые используется в системах СТН.

В качестве диэлектрика между центральной жилой и оплеткой лучше всего подходит вспененный полиэтилен. Электрические характеристики вспененного полиэтилена лучше, чем у сплошного (твердого) полиэтилена, но он больше подвержен отрицательному воздействию влаги. Поэтому в условиях повышенной влажности предпочтительнее твердый полиэтилен.

В типовой системе СТН применяются кабели длиной не более 200м, желательно кабели RG59/U. Если внешний диаметр кабеля около 0,25 дюйм. (6,35 мм), то он поставляется в катушках по 500 и 1000 фут. Если нужен более короткий кабель, используйте кабель RG59/U с центральной жилой калибра 22, активное сопротивление которого составляет около 16 Ом на 300 м. Если нужен более длинный кабель, то подойдет кабель с центральной жилой калибра 20, сопротивление которого по постоянному току равно приблизительно 10 Ом на 300м. В любом случае можно легко приобрести кабель, в котором диэлектрическим материалом является полиуретан или полиэтилен. Если требуется кабель длиной от 200 до 1500 фут. (457 м), лучше всего подойдет кабель RG6/U. При тех же электрических характеристиках, что у кабеля RG59/U, его наружный диаметр также примерно равен диаметру кабеля RG59/U. Кабель RG6/U поставляется в катушках длиной 500 фут. (152 м), 1000 фут. (304 м) и 2000 фут.(609 м) и изготавливается из различных диэлектрических материалов и различных материалов для внешней оболочки. Но диаметр центральной жилы кабеля RG6/U больше (калибр 18), поэтому его сопротивление постоянному току меньше, оно равно приблизительно 8 Ом на 1000 фут. (304 м), а это означает, что сигнал по этому кабелю можно передавать на большие расстояния, чем по кабелю RG59/U.

Параметры кабеля RG11/U выше параметров кабеля RG6/U. В то же время электрические характеристики этого кабеля в основном такие же, как у других кабелей. Можно заказать кабель с центральной жилой калибра 14 или 18 с сопротивлением постоянному току 3-8 Ом на 300м). Поскольку этот кабель из всех трех кабелей имеет наибольший диаметр (0,405 дюйм. (10,3 мм)), то работы по его прокладке выполнять труднее. Кабель RG11/U обычно поставляется в катушках по длиной 500 фут. (152 м), 1000 фут. (304 м) и 2000 фут. (609 м). Для применения в особых условиях производители часто изготавливают модификации кабелей RG59/U, RG6/U и RG11/U.

В результате изменений правил пожарной безопасности и техники безопасности в различных странах все большую популярность в качестве материала для диэлектрика и оболочки приобретает фторопласт (тефлон, или Teflon®) и другие огнестойкие материалы. В отличие от ПВХ эти материалы не выделяют ядовитых веществ при пожаре и поэтому считаются более безопасными.

Для прокладки под землей рекомендуется специальный кабель, укладываемый непосредственно в грунт. Внешняя оболочка такого кабеля содержит влагостойкие и другие защитные материалы, поэтому его можно укладывать прямо в траншею. О способх подземной прогладки кабелей читайте здесьПрокладка кабеля в земле.

При большом разнообразии видеокабелей для камер можно легко подобрать наиболее подходящий для конкретных условий. После того как определитесь с тем, какой должна быть ваша система, ознакомьтесь с техническими характеристиками оборудования и выполните соответствующие расчеты.

Длина кабеля

Сигнал ослабляется в каждом коаксиальном кабеле, и это ослабление тем больше, чем кабель длиннее и тоньше. Кроме того, ослабление сигнала увеличивается с ростом частоты передаваемого сигнала. Это одна из типичных проблем охранных систем телевизионного наблюдения (СТН) в целом.

Например, если монитор находится на расстоянии 300м от телекамеры, то сигнал ослабляется примерно на 37%. Самое плохое в этом то, что потери могут быть неочевидными. Поскольку вы не видите потерянную информацию, то можете даже не догадываться о том, что такая информация вообще была. Во многих видеоохранных системах СТН есть кабели длиной по несколько сотен и тысяч метров, и если потери сигналов в них велики, то изображения на мониторах будут серьезно искажены. Если расстояние между камерой и монитором превышает 200м, необходимо предпринять особые меры для обеспечения хорошей передачи видеосигнала.

Оконечная нагрузка кабеля

В системах телевизионного охранного наблюдения сигнал передается от камеры к монитору. Обычно передача идет по коаксиальному кабелю. Правильная оконечная нагрузка кабеля существенно влияет на качество изображения.

Используя номограмму (Рис. 1) можно определить значение напряжения подаваемого на видеокамеру (только для кабелей с медной жилой) задавшись сечением кабеля, максимальным током и удалением от источника питания.
Полученное значение напряжения нужно сравнить с минимально допустимым значением напряжения, при котором камера может стабильно работать.
Если значение меньше допустимого, то необходимо увеличить сечение используемых кабелей или использовать другую схему электропитания.
Номограмма рассчитана на источник электропитания видеокамер постоянным током с напряжением 12В.

Рис 1. Номограмма для определения напряжения на камере.

Волновое сопротивление (импеданс) коаксиального кабеля находится в диапазоне от 72 до 75 Ом, необходимо, чтобы сигнал передавался по однородной линии в любой точке системы для предотвращения искажения изображения и обеспечения надлежащей передачи сигнала от телекамеры к монитору. Импеданс кабеля должен быть постоянным и равным 75 Ом на всей его длине. Чтобы видеосигнал передавался от одного устройства к другому правильно и с малыми потерями, выходной импеданс телекамеры должен быть равен импедансу (волновому сопротивлению) кабеля, который, в свою очередь, должен быть равен входному импедансу монитора. Оконечная нагрузка любого видеокабеля должна быть равна 75 Ом. Обычно кабель подсоединен к монитору и одно это уже обеспечивает соблюдение указанного выше требования.

Обычно импеданс видеовхода монитора регулируется переключателем, расположенным около сквозных разъемов (вход/ выход), предназначенных для подсоединения дополнительного кабеля к другому устройству. Этот переключатель позволяет включить нагрузку величиной 75 Ом, если монитор является конечной точкой передачи сигнала, или включить высокоомную нагрузку (Hi-Z) и передать сигнал на второй монитор. Ознакомьтесь с техническими характеристиками оборудования и инструкциями к нему, чтобы определить требуемую оконечную нагрузку. Если оконечная нагрузка будет выбрана неверно, изображение обычно бывает слишком контрастным и слегка зернистым. Иногда изображение двоится, бывают и другие искажения.

Характеристика радиочастотных кабелей типа РК — RG

РК-75-1,5-11 М 1*0,24 0,24 1,5 ПЭ ОМ 0,08/60% ПЭ 2,4 8,4 0,32 50 BNC RG-58 пайка
РК-75-2-11 М 1*0,37 0,37 2,2 ПЭ ОМ 0,1/92% ПЭ 3,3 16 0,22 300 BNC RG-58 пайка
РК-75-2-11а М 1*0,37 0,37 2,2 ПЭ ОМ 0,1/75% ПЭ 3,3 14 0,23 200 BNC RG-58 пайка
РК-75-2-13 ЛМ 7*0,12 0,36 2,2 ПЭ ОМЛ 0,1/92% ПЭ 3,3 14,7 0,2 350 BNC RG-58 пайка
РК-75-3-32 М 1*0,6 0,6 2,7 ВПЭ ОМ 0,1/90% ПВХ 4,6 28,4 0,12 450 BNC RG-58, RG-59
РК-75-3,7-322а М 1*0,6 0,8 3,7 ВПЭ АЛ+ОМЛ 0,1/лм65% ПВХ 6 37,3 0,085 600 BNC RG-59
РК-75-4-11 М 1*0,72 0,72 4,6 ПЭ ОМ 0,15/92% ПЭ 7±0,2 63 0,08 600 BNC RG-6 пайка
РК-75-4-11а М 1*0,72 0,72 4,6 ПЭ ОМ 0,15/75% ПЭ 6,2±0,3 40 0,13 600 BNC RG-6 пайка
РК-75-4-12 М 7*0,26 0,78 4,6 ПЭ ОМ 0,15/92% ПЭ 7±0,2 63 0,09 600 BNC RG-6 пайка
РК-75-4-15 М 1*0,72 0,72/td> 4,6 ПЭ ОМ 0,15/92% ПВХ 7±0,2 72 0,08 600 BNC RG-6 пайка
РК-75-4-16 М 7*0,26 0,78 4,6 ПЭ ОМ 0,15/92% ПВХ 7±0,2 72 0,09 600 BNC RG-6 пайка
РК-75-4,9-322а М 1*1,1 1,1 4,9 ПЭ АЛ+ОМЛ 0,15/лм65% ПВХ 7,15 51 0,06 750 BNC RG-6
РК-75-9-12 М 1*1,35 1,35 9 ПЭ ОМ 0,2/90% ПВХ 12,2±0,8 189 0,06 Магистральный
РК-75-9-13 М 1*1,35 1,35 9 ПЭ ОМ 0,2/90% ПЭ 12,2±0,8 169 0,06 Магистральный
RG-59 М 1*0,81 0,81 3,66 ВПЭ АЛ+ОМЛ 0,15/67% ПВХ, ПЭ 6 31 0,085 600 BNC RG-59
RG-6U
RG-6WE
СОЖ
М
1*1,02
1*1,02
1,02
1,02
4,4 ВПЭ
4,7 ВПЭ
АЛ+ОМЛ
АЛ+ОМЛ
0,15/32%
0,15/64%
ПВХ, ПЭ
ПВХ, ПЭ
7
6,9
36
45
0,09
0,06
650 BNC RG-6 обжим
BNC RG-6
RG-11 СОЖ 1*1,63 1,63 7,11 ВПЭ АЛ+ОМЛ /60% ПВХ, ПЭ 10,3 166 0,05 Магистральный

Кабели представляют собой коаксиальный кабель с волновым сопротивлением 75 ом и диаметром 2,2 — 4,4 мм и несколько проводов питания сечением 0,35 — 0,75 мм2, объединённые общей оболочкой из поливинилхлоридного пластиката (для внутренней установки), светостабилизированного полиэтилена (для внешней установки) или термопластичной безгалогенной композиции (КВК-П-2 нг(С)-HF 2х0.50).

Для систем видеонаблюдения промышленностью выпускаются несколько типов комбинированных кабелей, специально предназначенных для передачи видеосигнала с одновременным подключением питания видеокамер или сигналов управления, а также микрофонных устройств (ККСЭВ, ККСЭВГ, ККСЭПГ).

Электрическое сопротивление постоянному току при 20°С, не более Ом/км:
          — для сечения 0.35 мм2 — 55.5;
          — для сечения 0.50 мм2 — 40.5;
          — для сечения 0.75 мм2 — 25.5.

Вид климатического исполнения (по ГОСТУ 15150-69):
          — УХЛ, категория размещения 1, 2 для кабелей с оболочкой из СПЭ;
          — УХЛ, категория размещения 2.1, 3, 4 для кабелей с оболочкой из ПВХ.

Окружающая среда для кабеля:
          — с ПВХ оболочкой — от минус 40°С до плюс 70°С;
          — с СПЭ оболочкой — от минус 40°С до плюс 80°С.

Срок службы кабелей:
— с ПВХ оболочкой — 12 лет,
— с П/Э оболочкой — 15 лет.

Более подробную информацию по выбору кабеля для СВН читайте здесь (Выбор видеокабеля для СВН),
а также здесь (Коаксиальный кабель в системах видеонаблюдения).

Электрическое сопротивление двух медных проводников шлейфа в зависимости от диаметра жилы и длины
Сечение, вес и сопротивление медных проводов

Без изоляции

С изоляцией эмалью

Диаметр, мм

Сечение, мм2

Сопротивл. 1 м

при 20°С, Ом (уд.сопр.)

Длина

на 1Ом, м

Диаметр, мм

Вес 100 м,
г

Провода, применяемые при монтаже, классифицируются диаметром или площадью поперечного сечения, проще — сечением. Диаметр провода выражается всегда в миллиметрах, а сечение — в квадратных миллиметрах.

В монтажной практике применяются круглые провода, для которых существует следующая формула расчёта сечения проводов по его диаметру:

S = πd2 / 4 = 0, 785 d2,

где S — сечение провода, мм2 ;
π — отношение длины окружности к диаметру, принятое равным 3, 14;
d — диаметр провода, мм.

Номограмма расчета сопротивления

    На крайних шкалах выбрать длину и сечение, соединить линейкой,
    на пересечении со средней шкалой прочитать сопротивление.
    ВНИМАНИЕ! Это сопротивление одного провода, кабель обычно
    содержит два провода, общее сопротивление будет вдвое больше.

    Многожильный провод представляет собой свитые вместе много одножильных проводков, поэтому, чтобы определить сечение многожильного провода нужно, сначала определить штангенциркулем или микрометром сечение одной проволочки многожильного провода и затем умножить на количество проводков в одном проводе.

    Можно приблизительно определить сечение многожильного провода в кабеле без замера отдельных проводков, измерив общий диаметр всех свитых проволочек. Но так как проволочки круглые, то между ними имеются воздушные зазоры, и это надо при определении сечения провода учесть. При замере диаметра надо проследить, что бы многожильный провод ни сплющился. Для исключения площади зазоров, нужно полученный результат вычислений сечение провода по формуле умножить на коэффициент 0,7854.

    По требованиям НПБ 88-2001* п.12.64. «Диаметр медных жил проводов и кабелей должен быть определён из расчёта допустимого напряжения, но не менее 0,5 мм.» Следовательно:

    S = π × d2 / 4 = 3,14 × 0,25 / 4 = 0,19625 мм2 Из расчёта видно, что поперечное сечение провода применяемого для шлейфов пожарной сигнализации должно быть не менее 0,2 мм2

    Для шлейфов охранной сигнализации необходимо применять кабель (например, КСПВ) сечением не менее 0,4 мм каждого провода.

    Подключение источников электропитания комплексной системы безопасности к сети энергоснабжения осуществляется трехпроводным кабелем.
    Сечение заземляющего провода должно быть не менее 1,5 мм2. Но, так как сечение проводников в кабеле сечением до 16 мм2 должно быть одинаковым, то подключение необходимо производить трёхпроводным кабелем сечением не менее 1,5мм2, согласно раздела 7 «Электрооборудование специальных установок» ПУЭ издание седьмое , Глава 7.1 «Электропроводки кабельных линий».

    При длинных линиях питания учитывайте следующее:

    Контакты реле, клеммные соединители (колодки) создают дополнительное сопротивление цепи питания, которое со временем будет увеличиваться. Предусмотрите соответствующий запас.
    Чем больше диаметр (сечение) провода, тем меньше его удельное сопротивление (падение напряжения питания соответственно тоже меньше). Провода в своей маркировке могут указывать как диаметр провода (КСПВ 4х0,5 — диаметр каждого из 4-х проводов 0,5мм) так и сечение (ШВВП 2х0,5 — сечение каждого из 2-х проводов 0,5 мм.квадратных). Будьте внимательны.
    Параллельное соединение двух проводов увеличивает вдвое их общее сечение, но не диаметр!
    Есть такое понятие — плотность тока. Измеряется А/мм.квадратный (Ампер на квадратный милиметр сечения). Чем больше плотность тока, тем больше проводник будет греться, соответственно при плотной укладке проводов выбирайте из сечение, обеспечивающее плотность тока порядка 2 А/мм.квадратный (для проводника диаметром D=0.5мм его сечение составит 0,196 мм.квадратных, соответственно максимальный ток для него Imax=2*0,196=0,4А=400мА). Для одиночных проводов можете взять значение плотности тока побольше, но значения 5 А/мм.квадратный лучше не превышать.

    Расчеты по формулам более точны, чем по таблицам, и необходимы в тех случаях, когда в таблицах отсутствуют нужные данные.

    Закон Ома позволяет нам отображать характеристики электрических цепей через взаимосвязь четырех основных компонент:

    • A — ток (в Амперах)
    • V — напряжение (в Вольтах)
    • R — сопротивление (в Омах)
    • P — мощность (в Ваттах)

    Взаимосвязь этих компонент между собой показана на так называемом «классическом колесе» (смотри рисунок ниже)

    Эта простая и удобная схема помогает нам понять фундаментальные взаимосвязи в электрических цепях.

    Сопротивление провода (в омах) вычисляется по формуле:

    где ρ — удельное сопротивление (по таблице);
    I — длина провода, м;
    S — площадь поперечного сечения провода, мм2;
    d — диаметр провода, мм.

    Длина провода из этих выражений определяется по формулам:

    Провода, применяемые при монтаже, классифицируются диаметром или площадью поперечного сечения, проще — сечением. Диаметр провода выражается всегда в миллиметрах, а сечение — в квадратных миллиметрах.

    В монтажной практике применяются преимущественно круглые провода. Для таких проводов существует следующая формула расчёта сечения проводов по его диаметру:

    S = πd2 / 4 = 0, 785 d2

    где S — сечение провода, мм2 ;
    π — отношение длины окружности к диаметру, принятое равным 3, 14;
    d — диаметр провода, мм.

    Необходимое сечение кабеля можно рассчитать по формуле:

    S = 2 * p / (Uнач — Uкон) * I * L

    где S – необходимое сечение кабеля;
    ρ – удельное сопротивление;
    Uнач – напряжение выдаваемое источником бесперебойного питания;
    Uкон – напряжение при котором работает оповещатель;
    I – ток нагрузки;
    L – длинна линии оповещения.

    Перевод сечения в диаметр производится по формуле:

    D = Корень (S / 0,78)

    Пример, исходные данные:

    Удельное сопротивление меди (ρ) – 0,0175;
    Источник бесперебойного питания выдает напряжение равное (Uнач ) – 20,5В;
    Минимальное напряжение при котором работает оповещатель (Uкон) – 18В;
    Ток потребляемый оповещателем (I)– 0,6А;
    Длинна линии оповещения (L) – 70м.

    S = 2 * 0,0175 / (20,5 — 18) * 0,6 * 70 = 0,59мм2

    D = Корень (0,59 / 0,78) = 0,87мм

    Приведенные расчеты являются ориентировочными, не учитывают изменение сопротивления меди в зависимости от сечения кабеля (см. таблицу выше «Сечение, вес и сопротивление медных проводов»), расположение оповещателей в разных местах линии оповещения.

    Берем, например, кабель КСПВ-0,5. Его диаметр 0,5 мм — сечение 0,196 мм.квадратных. Сопротивление одного метра каждого провода этого кабеля — 0,08 Ом, 100 метров — 8 Ом, если учесть, что питание приборов сигнализации осуществляется по двух проводной линии, то сопротивление 100 метров шлейфа питания составит 16 Ом. Поэтому при токе нагрузки, например, 200 мА (0,2А), напряжение питания на такой линии упадет на U=0.2*16=3,2 Вольт. При 12 Вольт в начале шлейфа в месте его окончания будет 12-3,2=8,8 Вольт.

    Если смотреть корректно, то падение напряжения питания будет распределено по участкам цепи (ясно из следующего рисунка).

    Желающие могут рассчитать его отдельно для участков R1, R2…Rn. (I1 = Iи1+Iи2…+Iиn, I2 = Iи2…+In и так далее).

    Для автоматизации расчетов можно использовать специализированное программное обеспечение, приведенное в ссылках внизу публикации.

    Например, программа “Wire” от “Авангардспецмонтаж”.

    В программе предусмотрены следующие варианты расчетов:
             - расчет при использовании кабелей одинакового сечения;
             - расчет при известных сечениях для разных участков цепи;
             - расчет напряжений при известных сечениях на участках цепи.

    Диаметр проволоки (без изоляции) измеряют микрометром или штангенциркулем. Для многопроволочного проводника сечение равно сечению одной проволоки, умноженному на их число:

    S = 0, 785 d2 n

    где n — число проволок, а остальные обозначения те же, что и в предыдущей формуле.

    Сопротивление R2 при температуре t2 может быть определено по формуле:

    R2 = R1,

    где а — температурный коэффициент электросопротивления (из таблицы);
    R1 — сопротивление при некоторой начальной температуре t1.

    Обычно за t1 принимают 18°С, и во всех приведенных таблицах указана величина R1 для t1 = 18°С.

    Допустимая сила тока при заданной норме плотности тока А/мм2 находится из формулы:

    I = 0,785*d2

    Необходимый диаметр провода по заданной силе тока определяют по формуле:

    Если норма нагрузки D = 2а/мм2, то формула принимает вид:

    Условие замены медного провода алюминиевым:

    S(ал) ≈ 1,65*S(м)

    S(ал), S(м) — сечение алюминиевых и медных проводов, мм2

    Ток плавления для тонких проволочек с диаметром до 0,2 мм подсчитывается по формуле

    где d — диаметр провода, мм;
    k — постоянный коэффициент, равный для меди 0,034, для никелина 0,07, для железа 0,127.

    Диаметр провода отсюда будет:

    d = k * Iпл + 0,005

    Материал

    Удельное сопротивление,

    Ом x мм2

    Удельный вес, г/см3

    Температурный коэффициент электросопротивления

    Температура плавления, °С

    Максимальная рабочая температура; °С

    м

    (р)

    Медь

    +0,004

    Алюминий

    +0,004

    Железо

    +0,005

    Сталь

    +0,0052

    Никелин

    +0,00022

    Константан

    —0,000005

    Манганин

    +0,00002

    Нихром

    +0,00017

    Подключение силовых электромагнитов в системах контроля доступа следует производить двухпроводным шнуром (например ШВВП 2*0,75) сечением рассчитанным по потребляемой мощности устройства.
    Расчёт проводить по формуле:

    S = ρ x L х I / U где: S – площадь сечения проводника, ( мм2 )

    ρ – удельное сопротивление материала (меди 0,0178 Ом x мм2/м)
    L – длина проводника (м)
    I – ток протекающий по проводнику (А)
    U – падение напряжения на проводнике (В), обычно принимается равным 5% от напряжения приложенном к проводнику.

    Рекомендации по монтажу проводов питания 12-вольтовых приборов
    (датчики, извещатели, видеокамеры и прочее электронное оборудование).

    1. Основные ограничения

    1.1. Максимально-допустимое падение напряжения на проводах на участке от блока питания до любого изделия – 1В.
    1.2. Для подключения питания непосредственно к клеммам изделий рекомендуется использовать провод сечением не более 1,5 мм2.

    2. Справочные данные

    Сопротивление 100м медного провода (двойного):
    а) для провода сечением 0,3 5мм2 – 10,3 Ом,
    б) для провода сечением 9,0 мм2 – 0,4 Ом.

    В промежутке между этими значениями – обратно пропорционально сечению провода.

    3. Минимально-допустимое сечение провода в зависимости от суммарного тока нагрузки и длины провода питания

    Для случая монтажа линии питания проводом единого сечения последовательным обходом всех изделий существует следующее общее выражение:

    Smin = 0,035 * ( i1 * L1 + i2 * L2 +… + ik * Lk), где

    L1, L2, … Lk, – значения длины участка провода питания от блока питания до каждого из изделий, м;
    i1, i2, ik – токи потребления изделий, включая токи нагрузок, которые питаются через клеммы изделия (замки, сирены, считыватели и т.д.), А;
    Smin — минимально-допустимое сечение провода, мм2.

    Если токи потребления изделий равны и составляют iср , то выражение упрощается и принимает следующий вид:

    Smin = 0,035 * iср * ( L1 + L2 +… + Lk ).

    Ниже приведена таблица значений сечения провода для случая, когда вся нагрузка сосредоточена на конце провода питания.

    При равномерном распределении изделий по длине провода питания его сечение может быть уменьшено по отношению к приведенным значениям в таблице в 2 раза.
    При неравномерном распределении изделий или при неодинаковых токах потребления для расчета сечения провода следует пользоваться вышеприведенными формулами.

    Если для монтажа цепей питания требуется провод сечением больше, чем 1,5 мм2, то рекомендуется разделить нагрузки на группы таким образом, чтобы к каждой группе можно было подвести питание отдельным лучом проводом сечением не более 1,5 мм2.
    Если монтаж цепей питания проведен проводом сечением больше, чем 1,5 мм2, то для непосредственного подключения цепи к плате изделий необходимо применять отводы из провода 0,75-1,5 мм2 длиной не более 2м.

    Зависимость сечения провода (S)
    от длины удаленной линии питания и мощности нагрузки

    Оценить величину напряжения на нагрузке с учётом падения напряжения на соединительной линии питания можно по следующей формуле в соответствии с эквивалентной схемой приведенной на рисунке.

    UН = U0 – 2 * RL * IН

    здесь: 2*RL = 3,6*10–2*L/S — сопротивление 2-х медных токопроводящих жил кабеля (соединительной линии) электропитания;
    U0 — выходное напряжение ИБП (В);
    — ток потребляемый нагрузкой (А);
    L — длина кабеля (соединительной линии) электропитания (м);
    S — сечение токопроводящей жилы кабеля электропитания (мм2).

    Чем провода отличаются от кабелей

    Провод — это одна неизолированная, одна или более изолированных жил, поверх которых, в зависимости от условий прокладки и эксплуатации, может иметься неметаллическая оболочка, обмотка или оплетка волокнистыми материалами или проволокой. Провода могут быть голыми и изолированными.

    Голые провода

    Голыми называют провода, токопроводящие жилы которых не имеют никаких защитных или изолирующих покрытий. Голые провода (ПСО, ПС, А, АС и т. д.) в основном применяют для воздушных линий электропередач. Изолированными являются провода, токопроводящие жилы которых покрыты изоляцией из резины или пластмассы. Эти провода имеют поверх изоляции оплетку из хлопчатобумажной пряжи или оболочку из резины, пластмассы или металлической ленты. Изолированные провода подразделяют на защищенные и незащищенные.

    Защищенные провода

    Защищенными называют изолированные провода, имеющие поверх электрической изоляции оболочку, предназначенную для герметизации и защиты от внешних воздействий. К ним относятся провода АПРН, ПРВД, АПРФ и др. Незащищенным изолированным проводом называется провод, не имеющий поверх электрической изоляции оболочки. Это провода АПРТО, ПРД, АППР, АППВ, ППВ и др.

    Электрические шнуры

    Шнуром называется провод, состоящий из двух и более изолированных гибких или особо гибких жил сечением до 1,5 мм2, скрученных или уложенных параллель но, покрытых в зависимости от условий эксплуатации неметаллической оболочкой или другими защитными покровами.

    Кабели

    Кабелем называется одна или несколько скрученных вместе изолированных жил, заключенных, как правило, в общую резиновую, пластмассовую, металлическую оболочку (НРГ, КГ, АВВГ н др.). Оболочка служит для защиты изоляции жил от воздействия света, влаги, различных химических веществ, а также для предохранения ее от механических повреждении.

    Установочные провода

    Установочные провода предназначены для монтажа силовых и осветительных сетей при неподвижной прокладке на открытом воздухе и внутри помещений. Изготавливают их с медными и алюминиевыми токоведущими жилами, одно- и многожильными, с резиновой и пластмассовой изоляцией, незащищенными и защищенными от легких механических повреждений. Токопроводящие жилы проводов имеют стандартные сечения, мм: 0,35; 0,5; 0,75; 1,0; 1,5; 2,5; 4,0; 6,0; 10,0; 16,0 и т. д.

    Рекомендуемая цветовая кодировка жил в силовых кабелях

    Количество жил Кабель с зелено-жёлтым проводом заземления
    2 коричневый (черный)

    синий

     фаза

     ноль

    3 зелёный / жёлтый *               коричневый (черный)

    синий

     заземление  фаза

     ноль

    4 зелёный / жёлтый * синий

    чёрный

    коричневый

     заземление  фаза А  (R)**

     фаза В  (S)**

     фаза С  (T)**5зелёный / жёлтый *

    чёрный

    коричневый 

    чёрный     

    синий    заземление

     фаза

     фаза

     фаза

     ноль6 

    и болеезелёный / жёлтый *

    остальные  заземление

     не нормируются

    *       обязательное обозначение

    **      международное обозначение фаз

    О маркировке кабелей

    Требования ПУЭ:
         2.3.23. Каждая кабельная линия должна иметь свой номер или наименование. Если кабельная линия состоит из нескольких параллельных кабелей, то каждый из них должен иметь тот же номер с добавлением букв А, Б, В и т.д.    Открыто проложенные кабели, а также все кабельные муфты должны быть снабжены бирками с обозначением на бирках кабелей и концевых муфт марки, напряжения, сечения, номера или наименования линии; на бирках соединительных муфт — номера муфты и даты монтажа. Бирки должны быть стойкими к воздействию окружающей среды. На кабелях, проложенных в кабельных сооружениях, бирки должны располагаться по длине не реже чем через каждые 50 м.

    Требования СНИП 3-05-06-85
         3.22. Провода и кабели, прокладываемые в коробах и на лотках, должны иметь маркировку в начале и конце лотков и коробов, а также в местах подключения их к электрооборудованию, а кабели, кроме того, также на поворотах трассы и на ответвлениях.
         3.103. Каждая кабельная линия должна быть промаркирована и иметь свой номер или наименование.
         3.104. На открыто проложенных кабелях и на кабельных муфтах должны быть установлены бирки.
    На кабелях, проложенных в кабельных сооружениях, бирки должны быть установлены не реже чем через каждые 50 — 70 м, а также в местах изменения направления трассы, с обеих сторон проходов через междуэтажные перекрытия, стены и перегородки, в местах ввода (вывода) кабеля в траншеи и кабельные сооружения.
    На скрыто проложенных кабелях в трубах или блоках бирки следует устанавливать на конечных пунктах у концевых муфт, в колодцах и камерах блочной канализации, а также у каждой соединительной муфты.
    На скрыто проложенных кабелях в траншеях бирки устанавливают у конечных пунктов и у каждой соединительной муфты.
         3.105. Бирки следует применять: в сухих помещениях — из пластмассы, стали или алюминия; в сырых помещениях, вне зданий и в земле — из пластмассы.
    Обозначения на бирках для подземных кабелей и кабелей, проложенных в помещениях с химически активной средой, следует выполнять штамповкой, кернением или выжиганием. Для кабелей, проложенных в других условиях, обозначения допускается наносить несмываемой краской.
         3.106. Бирки должны быть закреплены на кабелях капроновой нитью или оцинкованной стальной проволокой диаметром 1 — 2 мм, или пластмассовой лентой с кнопкой. Место крепления бирки на кабеле проволокой и сама проволока в сырых помещениях, вне зданий и в земле должны быть покрыты битумом для защиты от действия влаги.

    Требования ПТЭ ЭП
         2.4.5. Каждая КЛ должна иметь паспорт, включающий документацию, указанную в п.2.4.2. диспетчерский номер или наименование.
         Открыто проложенные кабели, а также все кабельные муфты должны быть снабжены бирками; на бирках кабелей в начале и конце линии должны быть указаны марка, напряжение, сечение, номер или наименование линии; на бирках соединительных муфт — номер муфты, дата монтажа.
         Бирки должны быть стойкими к воздействию окружающей среды. Они должны быть расположены по длине линии через каждые 50 м на открыто проложенных кабелях, а также на поворотах трассы и в местах прохода кабелей через огнестойкие перегородки и перекрытия (с обеих сторон).

    Из практики:
    На одной стороне проектное обозначение, откуда и куда идёт.
    На оборотной стороне марка кабеля, кол-во жил, сечение, длина.
    Круглая бирка — силовой кабель выше 1000В
    Квадратная бирка — силовой кабель до 1000В
    Треугольная бирка — контрольный кабель

    Расшифровка маркировки кабеля и провода

    1. Силовой кабель с ПВХ (виниловой) и резиновой изоляцией:
    ВВГ, ВВГнг, ВВГнг-LS, АВВГ, АВВГнг, АВВГнг-LS, ВБбШв, ВБбШнг, ВБбШнг-LS, АВБбШв, АВБбШнг, АВБбШнг-LS,

    КГ — кабель гибкий
    А — (первая буква) алюминиевая жила, при ее отсутствии — жила медная по умолчанию.
    В — (первая (при отсутствии А) буква) ПВХ изоляция
    В — (вторая (при отсутствии А) буква) ПВХ оболочка
    Г — отсутствие защитного покрова («голый»)
    нг — не поддерживающий горения
    LS — Low Smoke – с пониженным дымо- и газовыделение
    Бб – бронированный покров из стальных лент
    Шв — наружный покров из ПВХ шланга

    2. Кабель с БПИ — кабель с изоляцией из пропитанной бумаги:
    АСБ, АСБл, АСБ2л, ААБл, СБ, СБл, СБГ

    А — (первая буква) алюминиевая жила, при ее отсутствии — жила медная по умолчанию.
    АБ — алюминиевая броня
    СБ — (первая или вторая (после А) буква) свинцовая броня
    л — лавсановая лента
    2л — двойная лавсановая лента
    Г — отсутствие защитного покрова («голый»)

    3. Контрольный кабель:
    КВВГ, АКВВГ, КВВГнг, АКВВГнг, КВВГнг-LS, АКВВГнг-LS, КВВГэ, АКВВГэ, КВВГэнг-LS, АКВВГэнг-LS, КВБбШв, АКВБбШв, КВБбШнг, АКВБбШнг, КВБбШнг-LS, АКВБбШнг-LS

    К — (первая или вторая (после А) буква) — кабель контрольный кроме КГ — кабель гибкий
    Э — экран

    4. Телефонный кабель:
    ТПпП, ТпПэп, ТПпПз, ТПпэПз ТПпПБбШп, ТПпПзБбШп, ТПпэПзБбШп, ТСВ, ТСВнг

    Т — телефонный кабель
    П — полиэтиленовая изоляция
    п — поясная изоляция — ленты полиамидные, полиэтиленовые, поливинилхлоридные или полиэтилентерефталатные
    Э — экран
    П — полиэтиленовая оболочка
    З — гидрофобный заполнитель
    Шп — наружный покров из полиэтиленового шланга
    С — станционный кабель

    5. Подвесные провода:
    А — Алюминиевый голый провод
    АС — Алюминиево-Стальной (чаще употребляется слово «сталеалюминиевый») голый провод
    СИП — Самонесущий Изолированный Провод

    6. Некоторые типы кабеля расшифровываются особым образом:
    КСПВ — Кабели для Систем Передачи в Виниловой оболочке
    КПСВВ — Кабели Пожарной Сигнализации, с Виниловой изоляцией, в Виниловой оболочке
    КПСВЭВ — Кабели Пожарной Сигнализации, с Виниловой изоляцией, с Экраном, в Виниловой оболочке
    ПНСВ — Провод Нагревательный, Стальная жила, Виниловая оболочка
    ПВ-1, ПВ-3 — Провод с Виниловой изоляцией. 1, 3 — класс гибкости жилы (наиболее применимые классы гибкости жилы для данного типа провода, однако, могут применяться и другие).
    ПВС — Провод в Виниловой оболочке Соединительный
    ШВВП — Шнур с Виниловой изоляцией, в Виниловой оболочке, Плоский
    ПУНП — Провод Универсальный Плоский
    ПУГНП — Провод Универсальный Плоский Гибкий

    7. Силовой кабель:
    NYM, NHMH, NYY, NYCY, NYRGY

    N — согласно VDE
    Y — ПВХ
    H — безгалогеновый ПВХ
    M — монтажный кабель
    C — медный экран
    RG — броня

    8. Кабель итальянского производства имеет специфические обозначения согласно CEI UNEL 35011: FROR
    F — corda flessibile — гибкая жила
    R — polivinilclorudo — PVC — ПВХ изоляция
    O — anime riunite per cavo rotondo — круглый, не плоский кабель
    R — polivinilclorudo — PVC — ПВХ оболочка

    9. Контрольный кабель: YSLY, LiYCY

    Y — ПВХ
    SL — кабель контрольный
    Li — многожильный проводник по VDE

    10. Кабель передачи данных «витая пара»:
    UTP, FTP, S-FTP, S-STP

    U — unfoiled (нефольгированный, неэкранированный)
    F — foiled (фольгированный, экранированный)
    S — screened (экранированный медными проволоками)
    S-F — общий экран из фольги + общий плетеный экран
    S-S — экран каждой пары из фольги + общий плетеный экран
    TP — twisted pair — витая пара

    11. SAT — от англ. satellite — спутник — кабель для спутникового телевидения

    12. Телефонный кабель и кабель для пожарной сигнализации: J-Y(St)Y, J-H(St)H

    J- — инсталляционный, установочный кабель
    Y — ПВХ
    (St) — экран из фольги

    13. Безгалогеновый огнестойкий кабель:
    NHXHX FE 180, NHXCHX FE 180

    N — согласно VDE
    HX — сшитая резина
    C — медный экран
    FE 180 — кабель сохраняет свои свойства на протяжении определенного времени (в данном случае 180 минут) в открытом пламени, под напряжением

    14. Провода монтажные: H05V-K, H07V-K, N07V-K

    H — гармонизированный провод (одобрение HAR)
    N — соответствие национальному стандарту
    05 — номинальное напряжение 300/500 В
    07 — номинальное напряжение 450/750 В
    V — ПВХ изоляция
    K — гибкая жила для стационарного монтажа

    15. Кабели с изоляцией из сшитого полиэтилена:

    N — согласно VDE
    Y — ПВХ
    2Y — полиэтилен
    2X — сшитый полиэтилен
    S — медный экран
    (F) — продольная герметизация
    (FL) — продольная и поперечная герметизация
    E — трехжильный кабель
    R — броня из круглых стальных проволок
    J — наличие желто-зеленой жилы
    O — отсутствие желто-зеленой жилы

    В последнее время все большее применение находят импортные провода, а также инструменты для работы с ними, маркированные по стандарту AWG (American Wire Gauge) – система обозначения толщины проводов и других объектов круглого сечения (прутков, арматуры, трубок, кембриков и т.д.) принятый в США. Чем меньше номер AWG, тем толще диаметр провода. Калибр провода в стандарте AWG отражает его средний диаметр.
    Подобное „перевёрнутое“ обозначение диаметра имет исторические корни, когда проволоку для проводов изготавливали методом волочения. Номер AWG обозначал количество проходов через уменьшающиеся отверстия в волоке, прежде чем получался нужный диаметр проволоки. Например, толстая (более 8 мм) проволока размера AWG 0 только после 24 протягиваний через станок превращалась в AWG 24, диаметром около 0,5 мм.

    Калибры разнятся еще и в зависимости от типа кабеля: для одножильных кабелей AWG переводится в диаметр по одной формуле, для многожильных — по другой. Для справки приведем таблицу перевода наиболее популярных калибров одножильных и многожильных кабелей в диаметр и площадь поперечного сечения проводников.

    Одножильный кабель

    AWG Диаметр,
    мм
    Площадь поперечного
    сечения, мм2
    18 1.020 0.817
    19 0.912 0.653
    20 0.813 0.519
    21 0.724 0.412
    22 0.643 0.325
    23 0.574 0.259
    24 0.511 0.205
    25 0.455 0.163
    26 0.404 0.128

    Многожильный кабель

    AWG Количество
    жил
    Диаметр,
    мм
    Площадь поперечного
    сечения, мм2
    22 7 0.762 0.352
    22 19 0.787 0.380
    22 26 0.762 0.327
    24 7 0.610 0.226
    24 10 0.584 0.200
    24 19 0.610 0.239
    24 42 0.584 0.201
    26 7 0.483 0.140
    26 10 0.553 0.127
    26 19 0.508 0.153

    Прочитав эту статью, вы узнаете о таких вопросах:

    1. Преимущества алюминиевых проводов.
    2. Их недостатки.
    3. Правила использования.
    4. Почему медная проводка лучше?
    5. Что будет, если скрутить медный и алюминиевый кабеля.
    6. Как правильно их соединить?
    7. Видео об использовании алюминиевых проводов

    В любой сфере нашей жизни мы активно используем электричество. Конечно, наличие электричества в доме является одним из главных требований нашего существования. Это электричество подается по проводам. Причем они подходят как к самому дому или квартире, так и проходят по всем комнатам нашего дома. Для передачи электрического тока используются различные типы проводки. Наиболее популярной является проводка алюминиевая. Собственно на такой проводке мы и остановимся в этой статье. Сначала хочется отметить, что проводка из алюминия не может похвастаться отличными эксплуатационными характеристиками. Другими словами ее нельзя назвать самой подходящей или же самой идеальной. Однако она встречается практически в каждом доме. И этот факт обусловлен особенностями самого алюминия.

    Преимущества

    Этот металл обладает малым весом. Это преимущество сильно сказывается в тех ситуациях, когда нужно использовать большое количество алюминиевого кабеля. Так, легкость этого металла делает алюминиевый кабель фаворитом при прокладке ЛЭП. Стоит отметить, что алюминий — это очень распространенный металл, и он стоит меньше меди. Собственно эти два фактора и стали причиной использования алюминиевой проводки при строительстве жилья в СССР. 

    Еще одной чертой, которую можно отнести к преимуществам, является стойкость к коррозии. Хотя здесь есть свои нюансы. Дело в том, что поверхность алюминия при контакте с воздухом сразу (практически мгновенно) окисляется. Сверху образуется пленка, которая в дальнейшем защищает всю остальную часть проволоки от окисления.  Минус заключается в плохой способности пленки проводить ток. В результате в местах соединения кабелей возникают проблемы в прохождении тока.

    Недостатки

     Алюминиевая проводка характеризуется высоким удельным электрическим сопротивлением. Это сопротивление равняется 0,0271 Ом х кв.мм/м. Учитывая данный факт, в новейших редакциях ПУЭ отмечается, что в квартире или доме можно использовать только ту алюминиевую проводку, поперечное сечение которой превышает 16 кв. миллиметров.

    В конечном итоге получается так, что для обеспечения необходимого уровня пропускной способности нужно использовать кабель с большим сечением. Другими словами нужно монтировать проводку, которая имеет большую толщину. Если сравнивать проводку из меди, то она обладает таким удельным электрическим сопротивлением, которое равняется 0,0175 Ом х кв.мм/м.

    Такая проводка более эффективная и для использования в доме можно брать медный кабель с меньшим поперечным сечением. Как уже было отмечено выше, алюминий способен окисляться и пленка, образующаяся во время этого процесса, имеет плохую токопроводимость. Здесь есть еще один нюанс: эта пленка образуется из верхней части провода. В результате происходит небольшое уменьшение его поперечного сечения, а в результате растет сопротивление.

    Так как пленка на алюминиевой проводке обладает высоким сопротивлением, то в местах соединения отдельных частей проволоки растет переходное сопротивление. Вследствие этого проявляется в нагревании проводки в таких местах. В тех ситуациях, когда возрастает нагрузка на алюминиевую проводку, она начинает нагреваться. Если провод обладает достаточным поперечным сечением, то ничего страшного нет. Однако если проводка не рассчитана на такую нагрузку или используется больше своего нормированного срока эксплуатации, то это обязательно приводит к ее нагреву.

    Последний факт можно назвать очень плохим для мест соединения. Дело в том, что при нагревании алюминия происходит изменение его формы и пластичности. Конечно, проволока расширяется. После того, как нагрузка исчезла и кабель остыл, он набирает привычной формы. Однако после неоднократного повторения таких процессов происходит ослабление контакта концов электропроводов.

    Алюминий также обладает высокой хрупкостью. Она сильно возрастает после того, как он перегревается. Что касается срока службы, то для алюминиевой проводки он составляет 25 лет. После этого нужно устанавливать другой тип проводки.

    Правила использования алюминиевой проводки

    Как видно, проводку, сделанную из алюминия, не можно назвать наиболее оптимальным вариантом для использования в доме. Однако ее можно использовать, если соблюдать определенные требования:

    1. Поперечное сечение должно быть не менее 16-ти кв. миллиметров.
    2.  Для соединения отдельных частей нужно использовать зажимные контакты. При этом следует использовать специальную смазку, благодаря которой не будет осуществляться окисление контактов, и будет сохраняться низкий уровень переходного сопротивления.

    Полезный совет: также соединение можно выполнить другим способом. Он заключается в сварке алюминиевых электропроводов в распределительных коробках. Этот способ требуют больших затрат и больше времени. Поэтому многие электрики пытаются избежать его. Учитывая это, каждый, кто монтирует алюминиевую проводку в своем доме, должен наблюдать за работой электриков.

    Сравнение с медной проводкой

    Таблица сравнения алюминия и меди в проводке

    Отметим, что гораздо проще и более безопасным будет использование медной проводки. Выше мы указывали, что медная проводка характеризуется меньшим удельным сопротивлением. Иными словами медный кабель с тем же сечением, что и алюминиевый, может пропустить большее количество тока. Кроме этого медный электропровод:

    • является более устойчивым к физическим воздействиям (он не ломается после нескольких сгибаний);
    • обладает большим сроком годности;
    • не теряет своих токопроводящих свойств во время окисления.

    Приметным фактом является и то, что алюминий и медь окисляются. Однако пленки, которые образовались, имеют разные свойства. В первую очередь это касается токопроводимости. Как мы уже отмечали, окислительная пленка алюминиевой проводки имеет слабую токопроводимость. Аналогичная пленка на медной проводке обладает высокой токопроводимостью. Электропровода, сделанные из алюминия, окисляются значительно быстрее, чем медные провода.

    Медь окисляется при комнатной температуре, однако пленка, которая появляется на поверхности меди, очень слабая и ее легко разрушить. Для этого достаточно крепко скрутить два кабеля. Сильное окисление меди начинается тогда, когда температура становится больше 70-ти градусов Цельсия. Можно сделать вывод, что более качественным и, главное, более безопасным является медный кабель. Причина популярности алюминия кроется в его дешевизне.

    Почему нельзя скручивать алюминиевый и медный кабели?

    Конечно, если вы планируете осуществить замену электропроводки в доме и не имеете возможности установить все электропровода, изготовленные из меди, то можете совместить эти два типа проводки. Другими словами вы можете использовать алюминиевые кабели для подачи тока на осветительные приборы и медные провода для подачи тока к розеткам или мощным электроприборам. При этом в некоторых местах возникнет необходимость соединения медной и алюминиевой проводок.

    С самого начала следует отметить, что прямой контакт меди и алюминия как минимум является не рекомендуемым. Это означает то, что скручивать электропровода из двух металлов нельзя. Почему? Причина заключается в их физических свойствах. Эти два металла имеют разные величины токопроводимости и в результате места их соединения будут нагреваться. Также этому способствует наличие окислительных пленок.

    Если говорить об окислительной пленке на медной проводке, то она может проводить ток и поэтому не сильно влияет на нагрев. А вот такая же пленка на алюминиевом электропроводе обладает сильным сопротивлением и, соответственно, пропускает меньше тока. Данный факт усиливает нагревание. В процессе нагревания кабеля расширяются. Поскольку медь — это более твердый металл чем алюминий, то медный электропровод приводит к некоторой деформации алюминиевого провода. В результате, когда происходит охлаждение, само соединение выглядит несколько по-другому.

    После нескольких раз нагревания и охлаждения соединение ослабляется, а это приводит к появлению проблем в виде перегрева, искрения и горения. Также имеет место и появление гальванической пары. Однако она появляется только тогда, когда на соединение попадает влага. В противном случае эта пара не образуется. Гальваническая пара появляется потому, что в месте соединения таких проводок, которые мы называем медной и алюминиевой, начинается диссоциация окислов электропроводов. Этот процесс заключается в распаде окиси на заряженные ионы.

    После этого заряженные ионы окислов меди и алюминия становятся непосредственными участниками процесса движения тока. В результате они переносят заряд и также движутся. Это особенность приводит к разрушению металла. В конечном итоге в проводке образуются пустоты и раковины. Они в свою очередь уменьшают поперечное сечение и способность проводки пропускать ток.

    Конечный итог — перегрев мест соединения. Как мы уже отметили, этот процесс возникает только при наличии влаги. И чем больше влаги в месте скручивания, тем быстрее становится диссоциация. Думаю, вы уже поняли, что допускать попадание влаги на соединение, а также допускать прямой контакт медного и алюминиевого проводов нельзя.

    Способы соединения разных типов проводки

    Однако, что же делать, если в доме установлена проводка, которая состоит из медных и алюминиевых проводов, и их обязательно нужно соединить. В этом случае нужно использовать болтовые и клеммные соединения. Рассмотрим особенности использования таких соединений. Чаще всего в домах можно встретить соединения типа «орешек». Их так называют потому, что их внешний вид похож на орех. Это соединение образуют три пластины.

    Перед монтажом нужно открутить нижнюю и верхнюю пластины. Далее между средней и верхней пластиной устанавливают один провод и прикручивают верхнюю пластину. Аналогично делается со вторым проводом. Когда нижняя пластина является прикрученной, то процесс соединения является законченным. Несколько похожим на «орешек» является болтовое соединение. В данном случае к одному болту приматываются два провода. Однако между ними вставляется анодированная шайба. Далее с помощью гайки закрепляют оба провода.

    В той ситуации, когда в доме происходит замена проводки, то медную и алюминиевую можно соединить с помощью пружинных клемм. Они еще называются соединениями типа WAGO. Перед использованием пружинных клемм нужно зачистить провода. Зачистить надо первые 15 миллиметров. После этого их вставляют в отверстия и фиксируют с помощью маленьких рычагов. В середине таких клемм находится смазывающее вещество. Ее действие таково, что оба металла не окисляются.

    Полезный совет: использовать пружинные клеммы можно только для проводов, которые являются частью осветительной системы. Использование в силовых цепях является не рекомендованным с той точки зрения, что сильные нагрузки нагревают пружинные контакты. Следствием этого является плохой контакт и плохая проводимость тока.

    Соединение с помощью клеммной колодки

    Отличным инструментом, который может соединить алюминиевую проводку с медной и не только, являются клеммные колодки. Они состоит из планки, которая имеет клеммники. Чтобы соединить необходимые провода нужно зачистить концы проводов, вставить их в отверстия и затянуть болтом.

    Эти типы соединения можно использовать для соединения не только алюминиевого и медного провода, но и проводов, сделанных с любого другого металла. Благодаря такому подходу можно достичь более высокого уровня безопасности, чем при использовании обычного скручивания. Важным условием использования клеммников, болтов, пружинных клемм является регулярная (раз в полгода) проверка контактов.

    Видео об использовании алюминиевых проводов

    всего оценок:

    , средняя:

    из 5)

    Как произвести правильную замену электропроводки в квартире и какие материалы понадобятся для этой процедуры? Напольные, настенные кабель каналы Legrand — отличное решение для организации электроснабжения офисной аппаратуры Что нужно знать, чтобы осуществить правильный выбор кабеля, который будет использоваться для проводки в доме? Почему большое количество людей хочет установить в своем деревянном доме и не только ретро проводку?

    При устройстве электропроводки необходимо заранее определить мощности потребителей. Это поможет в оптимальном выборе кабелей. Такой выбор позволит долго и безопасно эксплуатировать проводку без ремонта.

    Кабельная и проводниковая продукция весьма разнообразна по своим свойствам и целевому назначению, а также имеет большой разброс в ценах. Статья рассказывает о важнейшем параметре проводки – сечении провода или кабеля по току и мощности, и как определить диаметр – рассчитать по формуле или выбрать с помощью таблицы.

    Общая информация для потребителя

    Токонесущая часть кабеля выполняется из металла. Часть плоскости, проходящей под прямым углом к проводу, ограниченная металлом, называется сечением провода. В качестве единицы измерения используют квадратные миллиметры.

    Сечение определяет допустимые токи, проходящие в проводе и кабеле. Этот ток, по закону Джоуля-Ленца, приводит к выделению тепла (пропорционально сопротивлению и квадрату тока), которое и ограничивает ток.

    Условно можно выделить три области температур:

    • изоляция остается целой;
    • изоляция обгорает, но металл остается целым;
    • металл плавится от высокой температуры.

    Из них только первая является допустимой температурой эксплуатации. Кроме того, с уменьшением сечения возрастает его электрическое сопротивление, что приводит к увеличению падения напряжения в проводах.

    Однако, увеличение сечения приводит к увеличению массы и особенно стоимости или кабеля.

    Из материалов для промышленного изготовления кабельной продукции используют чистую медь или алюминий. Эти металлы имеют различные физические свойства, в частности, удельное сопротивление, поэтому и сечения, выбираемые под заданный ток, могут оказаться различными.

    Узнайте из этого видео, как правильно подобрать сечение провода или кабеля по мощности для домашней проводки:

    Определение и расчет жил по формуле

    Теперь разберемся, как правильно рассчитать сечение провода по мощности зная формулу. Здесь мы решим задачу определения сечения. Именно сечение является стандартным параметром, по причине того, что номенклатура включает как одножильный вариант, так и многожильные. Преимущество многожильных кабелей в их большей гибкости и стойкости к изломам при монтаже. Как правило, многожильные изготавливают из меди.

    Проще всего определяется сечение круглого одножильного провода, d – диаметр, мм; S – площадь в квадратных миллиметрах:

    Многожильные рассчитываются более общей формулой: n – число жил, d – диаметр жилы, S – площадь:

    Диаметр жилы можно определить, сняв изоляцию и замерив диаметр по голому металлу штангенциркулем или микрометром.

    Допустимая плотность электротока

    Плотность тока определяется очень просто, это число ампер на сечение. Существует два варианта проводки: открытая и закрытая. Открытая допускает большую плотность тока, за счет лучшей теплоотдачи в окружающую среду. Закрытая требует поправки в меньшую сторону, чтобы баланс тепла не привел к перегреву в лотке, кабельном канале или шахте, что может вызвать короткое замыкание или даже пожар.

    Точные тепловые расчеты очень сложны, на практике исходят из допустимой температуры эксплуатации наиболее критичного элемента в конструкции, по которой и выбирают плотность тока.

    Таким образом, допустимая плотность тока, это величина, при которой нагрев изоляции всех проводов в пучке (кабельном канале) остается безопасным, с учетом максимальной температуры окружающей среды.

    Таблица сечения медного и алюминиевого провода или кабеля по току:

    В таблице 1 приводится допустимая плотность токов для температур, не выше комнатной. Большинство современных проводов имеют ПВХ или полиэтиленовую изоляцию, допускающую нагрев при эксплуатации не более 70-90°C. Для «горячих» помещений плотность токов необходимо снижать с коэффициентом 0.9 на каждые 10°C до температур предельной эксплуатации проводов или кабеля.

    Теперь о том, что считать открытой и что закрытой проводкой. Открытой является проводка, если она выполнена хомутами (шинкой) по стенам, потолку, вдоль несущего троса или по воздуху. Закрытая проложена в кабельных лотках, каналах, замурована в стены под штукатурку, выполнена в трубах, оболочке или проложена в грунте. Также следует считать проводку закрытой, если она находится в распределительных коробках или щитках. Закрытая охлаждается хуже.

    Например, пусть в помещении сушилки градусник показывает 50°С. До какого значения следует уменьшить плотность тока медного кабеля, проложенного в этом помещении по потолку, если изоляция кабеля выдерживает нагрев до 90°C? Разница составляет 50-20 = 30 градусов, значит, нужно трижды использовать коэффициент. Ответ:

    Пример подсчета участка проводки и нагрузки

    Пусть подвесной потолок освещается шестью светильниками мощностью по 80 Вт каждый и они уже соединены между собой. Нам требуется подвести к ним питание, используя алюминиевый кабель. Будем считать проводку закрытой, помещение сухим, а температуру комнатной. Теперь узнаем, как посчитать силу тока сечения провода по мощности медного и алюминиевого кабелей, для этого используем уравнение, определяющее мощность (сетевое напряжение по новым стандартам считаем равным 230 В):

    Используя соответствующую плотность тока для алюминия из таблицы 1, найдем сечение, необходимое для работы линии без перегрева:

    Если нам нужно найти диаметр провода, используем формулу:

    Подходящим будет кабель АППВ2х1.5 (сечение 1.5 мм.кв). Это, пожалуй, самый тонкий кабель, какой можно найти на рынке (и один из наиболее дешевых). В приведенном случае он обеспечивает двухкратный запас по мощности, т. е. на данной линии может быть установлен потребитель с допустимой мощностью нагрузки до 500 Вт, например, вентилятор, сушилка или дополнительные светильники.

    Розетки на эту линию устанавливать недопустимо, так как в них может быть включен (а, скорее всего, и будет) мощный потребитель и это приведет к перегрузке участка линии.

    Быстрый подбор: полезные стандарты и соотношение

    Для экономии времени, расчеты обычно сводят в таблицы, тем более, что номенклатура кабельных изделий довольно ограничена. В следующей таблице приводится расчет сечения медного и алюминиевого проводов по потребляемой мощности и силе тока в зависимости от предназначения — для открытой и закрытой проводки. Диаметр получается как функция от мощности нагрузки, металла и типа проводки. Напряжение сети считается равным 230 В.

    Таблица дает возможность быстро выбрать сечение или диаметр, если известна мощность нагрузки. Найденное значение округляется в большую сторону до ближайшего значения из номенклатурного ряда.

    В следующей таблице сведены данные допустимых токов по сечениям и мощности материалов кабелей и проводов для расчета и быстрого выбора наиболее подходящих:

    Рекомендации по устройству

    Устройство проводки, кроме всего прочего, требует навыков проектирования, что есть не у каждого, кто хочет ее сделать. Недостаточно иметь только хорошие навыки в электромонтаже. Некоторые путают проектирование с оформлением документации по каким-то правилам. Это совершенно разные вещи. Хороший проект может быть изложен на листках из тетрадки.

    Прежде всего, нарисуйте план ваших помещений и отметьте будущие розетки и светильники. Узнайте мощности всех ваших потребителей: утюгов, ламп, нагревательных приборов и т. п. Затем впишите мощности нагрузок, наиболее часто потребляемых в разных помещениях. Это позволит вам выбрать наиболее оптимальные варианты выбора кабелей.

    Вы удивитесь, сколько тут возможностей и какой резерв для экономии денег. Выбрав провода, подсчитайте длину каждой линии, которую вы ведете. Сложите все вместе, и тогда вы приобретете ровно то, что нужно, и столько, сколько нужно.

    Каждая линия должна быть защищена своим автоматом (автоматическим выключателем), рассчитанным на ток, соответствующий допустимой мощности линии (сумма мощностей потребителей). Подпишите автоматы, расположенные в щитке, например: «кухня», «гостиная» и т. д.

    Целесообразно иметь отдельную линию на все освещение, тогда вы сможете спокойно чинить розетку в вечернее время, не пользуясь спичками. Именно розетки чаще всего и бывают перегруженными. Обеспечивайте розетки достаточной мощностью – вы не знаете заранее, что вам придется туда включать.

    В сырых помещениях используйте кабели только с двойной изоляцией! Используйте современные розетки («евро») и кабели с заземляющими проводниками и правильно подключайте заземление. Одножильные провода, особенно медные, изгибайте плавно, оставляя радиус в несколько сантиметров. Это предотвратит их излом. В кабельных лотках и каналах провода должны лежать прямо, но свободно, ни в коем случае нельзя натягивать их, как струну.

    В розетках и выключателях должен быть запас в несколько лишних сантиметров. При прокладке нужно убедиться, что нигде нет острых углов, которые могут надрезать изоляцию. Затягивать клеммы при подключении необходимо плотно, а для многожильных проводов эту процедуру следует сделать повторно, у них есть особенность усадки жил, в результате чего соединение может ослабнуть.

    Медные провода и алюминиевые «не дружат» между собой по электрохимическим причинам, непосредственно соединять их нельзя. Для этого можно использовать специальные клеммники или оцинкованные шайбы. Места соединений всегда должны быть сухими.

    Фазные проводники должны быть белого (или коричневого) цвета, а нейтрали – всегда синего . Заземление имеет желто-зеленый цвет. Это общепринятые правила расцветки и продажные кабели, как правило, имеют внутреннюю изоляцию именно таких цветов. Соблюдение расцветки повышает безопасность эксплуатации и ремонта.

    Предлагаем вашему вниманию интересное и познавательное видео, как правильно рассчитать сечение кабеля по мощности и длине:

    Выбор проводов по сечению является главным элементом проекта электроснабжения любого масштаба, от комнаты, до больших сетей. От этого будет зависеть ток, который можно отбирать в нагрузку и мощность. Правильный выбор проводов также обеспечивает электро- и пожарную безопасность, и обеспечивает экономичный бюджет вашего проекта.