Как подключить трехфазный двигатель к однофазной сети без конденсатора?

kak podkljuchit trehfaznyj dvigatel k odnofaznoj seti bez kondensatora Статьи

Подключение трехфазного двигателя в однофазную цепь – вопрос актуальный. Такое включение пригодится при обеспечении работы оборудования в домашних условиях. Например, циркулярной пилы, сверлильного станка или зернодробилки.

Трехфазный двигатель в однофазной сети: частотный преобразователь

Самым прогрессивным методом такого включения является частотный преобразователь. С его помощью получают наиболее значимые факторы в процессе эксплуатации асинхронного электродвигателя – плавность пуска и мягкость торможения. Это исключает многократное превышение номинального пускового напряжения, чем увеличивает долговечность двигателя. Кроме того, частотный преобразователь практически в два раза снижает энергопотребление. Принцип его работы основан на двукратномном преобразовании напряжения. Но стоимость инвертора определено, велика, поэтому немного отпугивает.

Содержание
  1. Пошаговая инструкция сборки частотного преобразователя своими руками
  2. Шаг № 1. Схема инвертора
  3. Шаг № 2. Корпус преобразователя
  4. Шаг № 3. Блок питания
  5. Шаг № 4. Установка силовой части
  6. Шаг № 5. Устройство охлаждения
  7. Шаг № 6. Установка шунта
  8. Шаг № 7. Монтаж основной платы преобразователя, установка и прошивка контролера
  9. Шаг № 8. Модернизация преобразователя для регулировки частоты вращения двигателя
  10. Трехфазный двигатель в однофазной сети: конденсаторы
  11. Пошаговая инструкция применения конденсаторов для подключения асинхронного двигателя в однофазную сеть
  12. Шаг № 1. Расчет необходимой емкости конденсаторов
  13. Шаг № 2. Схема подключения
  14. Шаг№ 3. Соединение выводов
  15. Шаг № 4. Применение пускового конденсатора
  16. Шаг № 5. Соединение батареи конденсаторов необходимой емкости
  17. Шаг № 6. Подключение питания
  18. Шаг № 7. Подключение батареи конденсаторов
  19. Трехфазный двигатель в однофазной сети без конденсаторов: схемы подключения
  20. Принципиальная схема устройства
  21. Схема №1 для низкооборотистых электродвигателей
  22. Схема № 2 для высокооборотистых электрических машин
  23. Пример эксплуатации асинхронного электродвигателя 380 В в бытовой сети 220 В без конденсаторов
  24. Видео подключения трехфазного двигателя в однофазную сеть без конденсаторов: без потери мощности
  25. Проверенные модели
  26. Мое мнение о методе

Пошаговая инструкция сборки частотного преобразователя своими руками

В целях экономии можно собрать частотный преобразователь своими руками. Представляем пошаговую инструкцию сборки инвертора в домашних условиях.

Шаг № 1. Схема инвертора

Начинают сборку любого электронного прибора нужно со схемы. На просторах интернета таких схем большое множество. Поэтому прежде чем начать работу, нелишним будет покопаться и выяснить рабочая выбранная модель или нет. В нашем случае это многократно тестированная и использованная схема.

Выглядит она так. Схема рассчитана она для двигателей мощностью до 4 кВт, в процессе эксплуатации работает защита от перегрузки, нагрева и кз. Случился неприятный момент, короткое замыкание в брно двигателя, но защита отработала четко, ни двигатель, ни частотник не сгорели.

Шаг № 2. Корпус преобразователя

как подключить трехфазный двигатель к однофазной сети без конденсатора

В качестве корпуса был выбран корпус от системного блока компьютера. Можно применить что-нибудь компактнее, но в этот момент именно такой блок-корпус показался приемлемым. Не нужно тратиться на приобретение или изготовление чего-то нового.

Шаг № 3. Блок питания

Можно изготовить нехитрый блок питания своими руками по предлагаемой схеме.

как подключить трехфазный двигатель к однофазной сети без конденсатора

Но в нашем случае он был приобретен в готовом исполнении на 24 В.

Шаг № 4. Установка силовой части

как подключить трехфазный двигатель к однофазной сети без конденсатора

Далее, установлен набор конденсаторов, реле,

как подключить трехфазный двигатель к однофазной сети без конденсатора

диодный мост с обратными диодами G4PH50UD вынесен , применены полевые транзисторы IGBT.

Шаг № 5. Устройство охлаждения

А также смонтированы кулеры охлаждения для предотвращения нагрева радиатора.

как подключить трехфазный двигатель к однофазной сети без конденсатора

При тестировании схемы на двигателе 4кВт, возможно, появится нагрев. Проверка преобразователя на электрических машинах до 3,0 кВт нагрева не выявила.

как подключить трехфазный двигатель к однофазной сети без конденсатора

Поэтому чтобы не набивалась пыль во время работы кулеров, преобразователь планируется использовать в мастерской, установлено термореле, которое включит охлаждение только в случае перегрева радиатора до 36º С и более. Причем после падения температуры до заданных показателей, кулера опять отключатся.

Шаг № 6. Установка шунта

Устанавливаем шунт для 4кВт, как показано на фото.

Шаг № 7. Монтаж основной платы преобразователя, установка и прошивка контролера

Внизу корпуса смонтирована непосредственно плата частотника,

она идет на микроконтроллер pic 16F628А.

Шаг № 8. Модернизация преобразователя для регулировки частоты вращения двигателя

Такой конструкции частотного преобразователя достаточно для плавного пуска трехфазного электродвигателя и его эксплуатации в однофазной сети.

Если будет стоять задача регулировки оборотов двигателя, тогда его необходимо слегка усложнить, установив другой микроконтролер pic 16F648A,

два конденсатора для его обвязки 30PF,

и ручку для регулировки оборотов двигателя.

Стоить отметить, что стоимость деталей для частотного преобразователя выливается примерно в сумму 2 700 гривен или 6 700 рублей, если же приобрести прибор с такими же параметрами, но заводского изготовления, цена будет равняться порядка 7 000 гривен или 17 400 рублей.

Главное преимущество наличия частотного преобразователя в возможности подключения всех трехфазных электродвигателей до 4кВт, имеющихся в хозяйстве.

Трехфазный двигатель в однофазной сети: конденсаторы

Другим наиболее приемлемым способом подключения трехфазного электродвигателя в однофазную сеть являются конденсаторы. Если у вас нет средств на приобретение дорогостоящего оборудования или вопрос упирается в единоразовое подключение одного электродвигателя, то целесообразно применить конденсаторы. Это совершенно просто сделать, воспользовавшись пошаговой инструкцией из нашей статьи.

Пошаговая инструкция применения конденсаторов для подключения асинхронного двигателя в однофазную сеть

Шаг № 1. Расчет необходимой емкости конденсаторов

Начинать подключение электродвигателя нужно с подбора емкости конденсаторов. Рабочая емкость конденсаторов при соединении треугольником равняется отношению произведения величины силы тока и скалярного коэффициента 4 800 к номинальному напряжению.

В случае соединения звездой скалярный показатель равен 2 800.

Величина силы тока определяется как отношение мощности электродвигателя к произведению скалярного коэффициента 1,73, номинального напряжения U, коэффициента мощности cosφ и кпд η.

Данные для вычисления силы тока указаны на шильдике каждого конкретного электродвигателя.

Емкость пускового конденсатора принимается в два — три раза большей рабочего конденсатора.

Шаг № 2. Схема подключения

Схема подключения трехфазных двигателей а однофазную сеть выглядит так.

Шаг№ 3. Соединение выводов

Сначала определяем количество выводов в брно электрической машины. Для соединения треугольником необходимо, чтобы их было шесть. Если выводов всего три. Нужно снять крышки электродвигателя и найти концы обмоток. После чего припаять к ним провода и вывести в брно. Воспользовавшись схемой соединить обмотки треугольником.

Шаг № 4. Применение пускового конденсатора

Если число оборотов электродвигателя превышает 1500 об/мин, то для пуска следует применить отдельный специальный конденсатор.

Простейшее включение в сеть пускового конденсатора производится при помощи нефиксирующейся кнопки. При автоматизации процесса применяют реле тока.

Электродвигатели мощностью до 0,5 кВт можно включать с помощью реле из холодильника, предварительно заменив контактную пластину и отключив защиту от нагрева. Чтобы избежать залипания ее можно сделать из графитовой щетки. Для двигателей от 0,5 до 1,1 кВт обычно перематывают реле проволокой большего диаметра, а если мощность двигателя выше указанной величины,

то можно сделать реле тока самостоятельно.

Шаг № 5. Соединение батареи конденсаторов необходимой емкости

Для двигателя мощностью 1,1 кВт достаточно конденсатора емкостью 80 мкф. В нашем случае применяем 4 штуки по 20 мкф. Соединям их в одно целое, спаяв перемычки. Они будут выполнять функцию запуска и дальнейшей работы.

Шаг № 6. Подключение питания

Подключаем питание, см фото. Обязательно следует тщательно подготовить конца проводов. Тогда при возникновении проблем, некачественное соединение, как причину, можно будет сразу исключить.

Шаг № 7. Подключение батареи конденсаторов

Подключаем непосредственно конденсаторы Двигатель готов к работе.

Еще одним способом подключения является включение трехфазного электродвигателя в однофазную сеть без конденсаторов, при помощи двустронних ключей коммутации, активирование которых выполняется в определенно конкретный отрезок времени.

Трехфазный двигатель в однофазной сети без конденсаторов: схемы подключения

Принципиальная схема устройства

Столкнувшись с этой схемой на просторах интернета, человек очень обрадуется. Кстати, это решение впервые было опубликовано в далеком 1967 году.

Расходы небольшие, почему бы не попробовать и не создать прибор, обеспечивающий беспроблемное подключение асинхронного трехфазного двигателя в однофазную сеть. Но прежде чем вооружиться паяльником следует прочесть отзывы и комментарии.

Эта схема теоретически имеет право на жизнь, но на практике, в основном, не работает. Возможно, нужна более тщательная настройка. Сказать однозначно или дать гарантии нельзя. Большинство форумчан считает сборку такого прибора напрасной тратой времени, хотя некоторые утверждают обратное.

Из этого спора можно сделать следующие выводы:

  • схема может работать на двигателе до 2,2 кВт и частотой вращения 1 500 об/мин;
  • большая потеря мощности на валу электродвигателя;
  • схема требует тщательной опции задающей цепи C1R7, которую нужно подстраивать таким образом, чтобы напряжение на конденсаторе открывало и закрывало ключ, по всей вероятности транзисторы ключа попали внерабочий режим, для этого необходимо заменить резистор R6 или один из R3R4;
  • более надежными способами подключения трехфазного двигателя в однофазную сеть являются конденсаторы или частотный преобразователь.

Схема была осовременнена в 1999 году. Для запуска трехфазного двигателя в однофазной сети без конденсаторов были отлажены две простейшие схемы.

Обе опробованы на электродвигателях мощностями от 0.5 до 2.2 кВт и показали довольно таки хорошие результаты (время запуска не многим больше, чем в трехфазном режиме).

В целях финансовой экономии можно подключить трехфазный двигатель по работающим современным схемам.

В данных схемах используются симисторы, которые управляются импульсами разной полярности, а также симметричный динистор, который образует управляющие сигналы в поток каждого полупериода питающего напряжения.

Схема №1 для низкооборотистых электродвигателей

Она предназначена для запуска электродвигателя с номинальной частотой оборотов, которая равна или меньше 1500 оборотов в минуту. Обмотки данных двигателей соединены в треугольник. Фазосдвигающим устройством в данной схеме является специальная цепочка.

Изменяя сопротивление, получаем на конденсаторе напряжение, которое сдвинуто относительно основного питающего напряжения на определенный угол.

Ключевым элементом в данной схеме является симметричный динистор. В момент достижения напряжения на конденсаторе уровня, при котором динистор совершит переключение, подключится заряженный конденсатор к выводу управления симистора.

В этом момент активируется силовой двунаправленный ключ.

Схема № 2 для высокооборотистых электрических машин

Она нужна для запуска электродвигателей с номинальной частотой вращения 3000 оборотов в минуту, а также для двигателей, которые работают на механизмы с немалым моментом сопротивления при запуске.

В данных случаях необходим больший пусковой момент. Именно поэтому была заменена схема соединения обмоток двигателя, которая создает максимальный пусковой момент. В данной схеме конденсаторы, сдвигающие фазы, заменены парой электронных ключей.

Первый ключ включен в систему последовательно с обмоткой фазы и образует в ней индуктивный сдвиг тока. Второй — присоединен параллельно обмотке фазы, и образует в ней опережающий емкостной сдвиг тока.

При данной схеме учитываются обмотки электродвигателей, которые смещены в пространстве на 120 электрических градусов относительно друг друга.

Наладка заключается в определении оптимального угла сдвига тока в фазных обмотках, при котором производится надежный запуск двигателя.

Данное действие можно произвести без использования специальных приборов.

Выполнение данного процесса производится следующим образом. Подача напряжения на двигатель производится пускателем ручного нажимного типа ПНВС-10, через центральный полюс которого присоединяется фазосдвигающая цепочка.

Контакты среднего полюса находятся в замыкании только лишь при зажатой кнопке пуска.

Нажав данную кнопку, путем вращения двигателя подстроечного сопротивления, подбирают нужный пусковой момент. Также поступают и при наладке других схем.

Пример эксплуатации асинхронного электродвигателя 380 В в бытовой сети 220 В без конденсаторов

Видео подключения трехфазного двигателя в однофазную сеть без конденсаторов: без потери мощности

Домашние умельцы часто используют трехфазный двигатель для включения самодельных станков, работающих от бытовой проводки напряжением 220 вольт внутри гаража или мастерской. Для их запуска чаще всего используется конденсаторная схема.

В статье собраны советы, как можно подключить такой электродвигатель в однофазную сеть без использования конденсаторной батареи или частотного преобразователя за счет импульса тока от электронного ключа. Они дополняются схемами и видеороликом.

Принцип работы электронного ключа

Если собрать обмотки асинхронного электродвигателя по схеме треугольника и подключить к напряжению однофазной сети 220 вольт, то через них станут протекать одинаковые токи, как показано на графике ниже.

Угловое смещение любой обмотки относительно других составляет 120 градусов. Поэтому магнитные поля от каждой из них будут складываться, устранять взаимное влияние.

Создаваемое результирующее магнитное поле статора не будет оказывать влияние на ротор: он останется в состоянии покоя.

Чтобы электродвигатель начал вращение необходимо через его обмотки пропустить сдвинутые на 120О токи, как это делается в нормальной трехфазной системе питания или за счет подключения частотного преобразователя. Тогда двигатель станет вырабатывать мощность с минимальными потерями, обладая наибольшим КПД.

Широко распространённые промышленные схемы запуска трехфазного двигателя в однофазной сети позволяет ему работать, но с меньшим КПД и большими потерями, что, чаще всего, вполне допустимо.

Оптимальными считаются схемы подключения обмоток в звезду или треугольник для пуска и работы с блоком конденсаторов.

Альтернативными методами являются:

  1. Механическая раскрутка ротора, например, за счет ручной намотки шнура на вал и резкого его прокручивания рывком при поданном напряжении;
  2. Подача фазосдвигающего импульса тока электронным ключом в одну или две обмотки электродвигателя.

Поскольку первый способ «намотал и дернул» не вызывает трудностей, то сразу анализируем второй.

На верхней схеме показан подключенный параллельно обмотке B электронный ключ «k». Это довольно условное обозначение принято для объяснения принципа работы электродвигателя за счет формирования токового импульса.

При достижении момента максимальной амплитуды напряжения на обмотке А происходит его включение и вброс фазосдвигающего импульса тока в обмотку фазы B.

За счет этого импульса происходит сдвиг тока по фазе внутри этой обмотки. Он разбалансирует магнитные моменты, действующие на ротор, создает его вращение.

Угол сдвига фаз φ, необходимый для запуска двигателя, достаточно выдержать в интервале 50÷70О, хотя идеальный вариант — 120.

Конструкция фазосдвигающего электронного ключа может собираться из разных деталей. Наиболее подходящие устройства для бытовых целей по мере их сложности представлены ниже.

Схема запуска электродвигателя до 2 кВт

Ее описание можно найти в №6 журнала Радио за 1996 год. Автор статьи В Голик предлагает конструкцию двунаправленного (положительной и отрицательной полугармоник) электронного ключа на двух диодах и тиристорах с управлением транзисторным блоком.

Силовые диоды VD1 и VD2 совместно с тиристорами VS1, VS2 образуют мост, который управляется прямым и обратным биполярными транзисторами. Положение подстроечного резистора R7 влияет на напряжение открытия VT1, VT2.

При открытии транзисторного ключа на каждой полуволне напряжения происходит подача тока на управляющие электроды тиристоров и вброс одним из них соответствующего мощного токового импульса в подключенную обмотку трехфазного электродвигателя.

Благодаря приложенному моменту магнитных сил к ротору, последний начинает вращение. Его энергия постоянно пополняется на каждой полуволне очередным импульсом.

Автор выполнил электронный ключ на стеклопластиковой плате и поместил его в изолированный корпус с возможностью подключения входных и выходных цепей через контактные выводы. Вариант исполнения схемы навесным монтажом тоже имеет право на реализацию.

Для работы электродвигателей небольших мощностей допустимо силовые диоды и тиристоры размещать без радиаторов. Но обеспечить хороший теплоотвод с них и надежную работу лучше заранее, включив эти элементы в конструкцию электронного ключа.

Номиналы электронных компонентов указаны прямо на схеме.

С целью обеспечения безопасности следует хорошо выполнить изоляцию корпуса электронного блока, исключить случайное прикосновение к его деталям во время работы: они все находятся под напряжением 220 вольт.

Ползунок резистора R7 «Режим» имеет два крайних положения:

  1. минимального;
  2. и максимального сопротивления.

В первом случае электронный ключ открыт и создает максимальный импульс сдвига тока в обмотке, а во втором — закрыт: вращение ротора исключено.

Запуск трехфазного двигателя осуществляют на максимально допустимом сдвиге фазы тока внутри обмотки. Затем положением R7 выставляют его рабочие обороты и мощность.

Проверенные модели

Автор опробовал схему на двигателях с:

  1. числом оборотов 1360 и мощностью 370 ватт (АААМ63В4СУ1);
  2. 1380 об/мин, 2 кВт.

Результаты экспериментов его устроили.

Вместо рекомендованных силовых диодов и тиристоров можно использовать любые другие полупроводниковые элементы. Но, следует обращать внимание на их рабочий ток не менее 10 ампер и обратное напряжение от 300 вольт.

Две схемы на симисторах

Следующие 2 конструкции электронного ключа описал В Бурлако в 1999 году. Они опубликованы в журнале Сигнал №4.

Запуск легкого электродвигателя

Устройство разработано для двигателей с мощностью до 2,2 кВт, имеет минимальный набор электронных деталей.

Конденсатор С, обладая емкостным сопротивлением, под действием приложенного к его пластинам напряжения, сдвигает вектор тока вперед на 90 градусов, направляя его на управление динистором VS2.

Разность потенциалов на конденсаторе регулируется суммарным сопротивлением R1, R2. Импульс динистора поступает на управляющий электрод симистора VS1, который вбрасывает ток в обмотку электродвигателя.

Схема пуска двигателя под нагрузкой

Для станков и механизмов, создающих большое противодействие раскрутке ротора, можно порекомендовать переключить обмотки на схему разомкнутой звезды с созданием двух раскручивающих моментов.

Полярность обмоток двигателя указана точками на схеме. Фазосдвигающие цепочки импульсов тока работают по той же технологи, что и в предыдущих случаях. Номиналы электрических деталей проставлены рядом с их графическими обозначениями.

Автор Бурлако подавал напряжение на двигатель трехфазным пускателем SG1 марки ПНВС-10, которым комплектовались старые активаторные стиральные машины.

Все три контакта этого пускателя при нажатии на кнопку «Пуск» замыкаются одновременно, а при отпускании:

  • два крайних остаются в замкнутом состоянии;
  • средний — разрывается, отключая цепь пусковой обмотки.

Через этот средний контакт в обеих схемах подается импульс тока от фазосдвигающей цепочки. Она работает только на время, необходимое для раскрутки двигателя, после чего выводится из работы, отключается от питающего напряжения.

Момент запуска двигателя в каждой схеме подбирают после подачи напряжения изменением сопротивления R2. При этом в треугольнике до момента раскрутки ротора проходят большие токи, вызывающие сильные вибрации конструкции. Для их уменьшения рекомендуется подбирать фазосдвигающий импульс ступенями, а не плавно.

При оптимальном положении R2 двигатель запускается без вибраций.

Для двигателей небольшой мощности можно осуществлять монтаж симисторов без радиаторов охлаждения, но последние все же повышают надежность схемы.

Мое мнение о методе

Рекомендую обратить внимание на следующий вывод.

В трех рассмотренных схемах ток рабочего режима протекает по всем подключенным обмоткам. Полное расходование приложенной энергии тратится не рентабельно. Только около 30% ее мощности создает вращение ротора. Остальная часть порядка 70% — безвозвратные потери.

Если кого-то устраивает запуск трехфазного двигателя в однофазной сети по этой схеме, то это ваш выбор. Я же сделал обзор этих схем, чтобы показать их положительные и отрицательные стороны, не навязывая собственное мнение.

Этой темой стали массово пользоваться создатели видеороликов на Ютубе, набирая количество просмотров и подписчиков, как ЮКА ЛАХТ, в своем видео «Без конденсаторный запуск трехфазного двигателя».

Делайте выбор осознанно, а если остались вопросы по теме, то сейчас вам удобно задать их в комментариях.

Каталог сайтов Всего.ру
Оцените статью
Всё об отоплении и строительстве
Добавить комментарий