Электронный балласт для люминесцентных ламп схема 36w

Содержание

Лампы дневного света (ЛДС) в виде длинной трубки давно применяются как в быту, так и в офисах. Главное их преимущество, по сравнению с лампами накаливания, – большая светоотдача, долговечность и экономия электроэнергии.

В старых светильниках применяли тяжелые дроссели и стартеры, они долго и с миганием зажигали лампы, работали ненадежно, гудели, а лампы мигали. На смену им пришли электронные балласты. Они легче по весу, мгновенно зажигают лампу, не гудят, работают в широком диапазоне питающих напряжений, не мигают, так как работают на больших частотах, и по стоимости приблизились к светильникам с тяжелыми дросселями.

электронный балласт для люминесцентных ламп схема 36w

Фото. Внешний вид светильника

Внешний вид такого светильника китайского производства типа DL-3011 для ЛДС мощностью 36 Вт показан на фото. Его номинальное питающее напряжение 220…240 В/50 Гц, но при испытаниях показал работоспособность и в диапазоне напряжений 100…240 B. Сам электронный блок питания (балласт) помещается внутри светильника в пластмассовой коробке. Он смонтирован на монтажной плате размерами 107х27 мм (рис.1 ).

электронный балласт для люминесцентных ламп схема 36w

Рис 1. Электронный ПРА

Принципиальная схема ЭПРА нарисована по монтажной плате и показана на рис.2 Все элементы на ней обозначены так же, как и на монтажной плате.

электронный балласт для люминесцентных ламп схема 36w

Рис 2. Принципиальная схема ЭПРА

Вначале вспомним принцип зажигания люминесцентных ламп, в том числе и при применении электронных балластов. Для этого необходимо выполнить два условия: первое – разогреть обе ее нити накала, второе – приложить большое (около 600 В) напряжение. Величина напряжения зажигания прямо пропорциональна длине стеклянной люминесцентной лампы, т.е. для коротких (18 Вт) ламп оно меньше, а для длинных (36…40 Вт) ламп – больше.

Работа электронного балласта

Вначале сетевое напряжение выпрямляется до постоянного напряжения 260…270 В (измерено на работающем преобразователе при напряжении сети

220 В) и сглаживается электролитическим конденсатором С1 (15 мкФ/400 В).

Далее двухтактный полумостовой преобразователь, активными элементами которого являются два биполярных высоковольтных транзистора структуры n-p-n (MJE13005), называемыми ключами (рис.2 ), преобразует постоянное напряжение 260…270 В в высокочастотное напряжение частотой 38 кГц, что позволяет значительно уменьшить габариты и вес балласта. Нагрузкой и одновременно управляющим элементом преобразователя является трансформатор (обозначен на схеме как TU38Q2) со своими тремя обмотками, из них две – управляющие обмотки (каждая по 4 витка) и одна – рабочая, состоящая из двух витков (рис.2 см. прикрепленные данные). Цепь с рабочей обмоткой создает нагрузку на преобразователь.

Первоначальный запуск преобразователя обеспечивает симметричный динистор, обозначенный в схеме DB3. Он открывается, когда после включения электросети напряжение в точках его подключения превысит порог срабатывания. При открытии динистор подает импульс на базу транзистора, после чего преобразователь запускается.

Транзисторные ключи открываются противофазно от импульсов с управляющих обмоток. Для этого обмотки включены в базы транзисторов противофазно (на рис.2 начало обмоток обозначены точками). Открытие каждого ключа вызывает наводку импульсов в двух противоположных обмотках, в том числе и в рабочей обмотке (2 витка). Переменное напряжение с рабочей обмотки L1 подается на люминесцентную лампу через последовательную цепь, состоящую из обмотки L1, первой нити накала лампы, С5 (4700 пФ/1200 В), второй нити накала лампы, С4 (100 нФ/400 В). Величины индуктивностей и емкостей в этой цепи подобраны так, что в ней возникает резонанс напряжений при неизменной частоте преобразователя.

На конденсаторе С5 (470 пФ/1200 В), включенном в резонансную цепь (к лампе), происходит самое большее падение напряжение (так как у С5 самое большое реактивное сопротивление из всех элементов контура), оно зажигает лампу.

Следовательно, максимальный ток в резонансной цепи разогревает обе ее нити накала, а большое резонансное напряжение на конденсаторе С5 зажигает лампу.

Зажженная лампа хотя и уменьшает свое сопротивление, но, как показали измерения, переменное напряжение на ней (и на конденсаторе С5) составляет около 295 В, а на дросселе L1 – около 325 В. Т.е. резонанс напряжений в цепи продолжается, из-за чего уже зажженная лампа и продолжает гореть. Дроссель L1 своей индуктивностью ограничивает ток в зажженной лампе, так как ее сопротивление после зажигания уменьшается. После зажигания лампы преобразователь продолжает работать в автоматическом режиме, не меняя свою частоту с момента запуска. Весь этот процесс зажигания длится менее 1 с.

При испытаниях светильник сохранял работоспособность в диапазоне питающего напряжения переменного тока от 220 В до 100 B, при этом частота преобразования увеличивалась с 38 кГц до 56 кГц, но яркость свечения лампы при напряжении 100 B заметно уменьшилась.

Следует отметить, что на люминесцентную лампу все время подается переменное напряжение, так как это обеспечивает равномерный износ эмиссионных способностей нитей накаливания и этим увеличивает срок службы лампы. При питании лампы постоянным током срок ее службы уменьшается на 50%.

Детали электронного балласта

Типы радиоэлементов указаны в принципиальной схеме (рис.2 см. прикрепленные данные). В состав устройства входят:

  1. Т1, Т2 – транзисторные ключи MJE13005 китайского производства (аналог КТ8164А), структуры n-p-n, в корпусе TO-220 (400 В/4 A, в импульсе 8 А). Их можно заменить КТ872А (1500 В/8 A, корпус Т26а). Цоколевка MJE13005 показана на рис.2 (см. прикрепленные данные). При установке новых транзисторов всегда определяйте правильность выводов БКЭ, так как в аналогах она может не совпадать.
  2. Трансформатор TU38Q2 с ферритовым кольцом, размер которого 11х6х4,5, его вероятная магнитная проницаемость около 2000. Трансформатор имеет 3 обмотки, две из них (управляющие) содержат по 4 витка и одна (рабочая) – 2 витка.
  3. Диоды D1–D7 типа 1N4007 (1000 В/1 А). D1–D4 – выпрямительный мост, D6, D7 – демпферные диоды, а диод D5 разделяет источники питания.
  4. Цепочка R1C2 обеспечивает задержку пуска преобразователя с целью его «мягкого» пуска и не допущения большого пускового тока.
  5. Симметричный динистор типа DВ3 (Uзс.max =32 B; Uос =5 В; Uнеотп.и.max =5 B) обеспечивает первоначальный запуск преобразователя.
  6. R3, R4 – ограничивающие резисторы в цепи эмиттера транзисторов. При экстремальных условиях сгорают, защищая более дорогие транзисторы.
  7. R5, R6 – гасящие резисторы в цепи базы транзисторов.
  8. D6, С3, R2 – демпферная цепочка, препятствующая выбросам напряжения на ключе в момент его запирания, демпферную функцию выполняет и диод D7, но на втором ключе. Кроме того, С3 уменьшает частоту преобразования.
  9. Дроссель L1 состоит из двух склеенных между собой Ш-образных ферритовых половинок. L1 участвует в резонансе напряжений (совместно с С5 и С4) для обеспечения зажигания лампы и поддержки ее в рабочем состоянии, а также ограничивает ток в светящейся лампе.
  10. С5 (4700 пФ/1200 B), С4 (100 нФ/400 B) – конденсаторы в цепи люминесцентной лампы, участвующие в ее зажигании (через резонанс напряжений), а после зажигания поддерживают ее в рабочем (светящемся) режиме. Максимально допустимое напряжения конденсатора С5=1200 В, такая величина подобрана неслучайно. При зажигании напряжение на С5 может превышать 600…700 В, и конденсатор должен выдержать его.
  11. Конденсаторы 22 нФ/100 В (на схеме производители их не обозначили) предназначены для уменьшения частоты работы преобразователя. Напомним, что она равна 38 кГц при номинальном питающем напряжении.
  12. С1 (15 мкФ/400 В) – единственный оксидный конденсатор в балласте, выполняющий функцию сглаживания выпрямленного напряжения питающей электросети.
  13. F1 – мини-предохранитель в стеклянном корпусе номиналом 1 А.

При ремонте платы под напряжением будьте осторожны, так как ее радиоэлементы находятся под фазным напряжением.

Перегорание (обрыв) накальных спиралей люминесцентной лампы, при этом блок питания остается исправным. Это типичная неисправность. Устраняется она простой заменой стеклянной лампы, которая продается в любом магазине электротоваров и стоит около 1,5 USD. Применять можно лампы мощностью 36 и 40 Вт.

Трещины в пайке монтажной платы

Причины их появления: периодическое нагревание и последующее, после выключения, остывание места пайки, а также низкокачественная пайка платы изготовителем. Нагреваются места пайки от элементов, которые греются, – это транзисторные ключи. Такие трещины могут проявиться после нескольких лет эксплуатации, т.е. после многократного нагревания и остывания места пайки. Устраняется неисправность повторной пайкой трещины. Иногда необходимо предварительно зачистить место пайки.

Повреждение отдельных радиоэлементов

Отдельные радиоэлементы могут повредиться от скачков напряжения в электросети. В первую очередь, это транзисторы MJE13005. Производители не предусмотрели защиты схемы от всплесков напряжений, например, варисторами. Скачки напряжений часто имеют место в сельских электросетях во время сильных ветров и молний, поэтому во время таких атмосферных явлений светильник лучше не включать. Имеющийся в схеме предохранитель (1А) не защитит радиоэлементы от скачков напряжений, а лишь при пробое радиоэлементов.

Подключение и ремонт баластника для люминесцентных ламп

Балласт для газоразрядной лампы (люминесцентные источники света) применяется с целью обеспечения нормальных условий работы. Другое название – пускорегулирующий аппарат (ПРА). Существует два варианта: электромагнитный и электронный. Первый из них отличается рядом недостатков, например, шум, эффект мерцания люминесцентной лампы.

Второй вид балласта исключает многие минусы в работе источника света данной группы, поэтому и более популярен. Но поломки в таких приборах тоже случаются. Прежде чем выбрасывать, рекомендуется проверить элементы схемы балласта на наличие неисправностей. Вполне реально самостоятельно выполнить ремонт ЭПРА.

Разновидности и принцип функционирования

Главная функция ЭПРА заключается в преобразовании переменного тока в постоянный. По-другому электронный балласт для газоразрядных ламп называется еще и высокочастотным инвертором. Один из плюсов таких приборов – компактность и, соответственно, небольшой вес, что дополнительно упрощает работу люминесцентных источников света. А еще ЭПРА не создает шум при работе.

Балласт электронного типа после подключения к источнику питания обеспечивает выпрямление тока и подогрев электродов. Чтобы люминесцентная лампа зажглась, подается напряжение определенной величины. Настройка тока происходит в автоматическом режиме, что реализуется посредством специального регулятора.

Такая возможность исключает вероятность появления мерцания. Последний этап – происходит высоковольтный импульс. Поджиг люминесцентной лампы осуществляется за 1,7 с. Если при запуске источника света имеет место сбой, тело накала моментально выходит из строя (перегорает). Тогда можно попытаться сделать ремонт своими руками, для чего требуется вскрыть корпус. Схема электронного балласта выглядит так:

электронный балласт для люминесцентных ламп схема 36w Основные элементы ЭПРА люминесцентной лампы: фильтры; непосредственно сам выпрямитель; преобразователь; дроссель. Схема обеспечивает еще и защиту от скачков напряжения питающего источника, что исключает необходимость ремонта по данной причине. А, кроме того, балласт для газоразрядных ламп реализует функцию коррекции коэффициента мощности.

По целевому назначению встречаются следующие виды ЭПРА:

  • для линейных ламп;
  • балласт, встроенный в конструкцию компактных люминесцентных источников света.

ЭПРА для люминесцентных ламп подразделяются на группы, отличные по функциональности: аналоговые; цифровые; стандартные.

Схема подключения, запуск

Пускорегулирующий аппарат подключается с одной стороны к источнику питания, с другой – к осветительному элементу. Нужно предусмотреть возможность установки и крепления ЭПРА. Подключение производится в соответствии с полярностью проводов. Если планируется установить две лампы через ПРА, используется вариант параллельного соединения.

Схема будет выглядеть следующим образом:

электронный балласт для люминесцентных ламп схема 36w Группа газоразрядных люминесцентных ламп не может нормально работать без пускорегулирующего аппарата. Его электронный вариант конструкции обеспечивает мягкий, но одновременно с тем и практически мгновенный запуск источника света, что дополнительно продлевает срок его службы.

Поджиг и поддержание функционирования лампы осуществляется в три этапа: прогрев электродов, появление излучения в результате высоковольтного импульса, поддержание горения осуществляется посредством постоянной подачи напряжения небольшой величины.

Определение поломки и ремонтные работы

Если наблюдаются проблемы в работе газоразрядных ламп (мерцание, отсутствие свечения), можно самостоятельно сделать ремонт. Но сначала необходимо понять, в чем заключается проблема: в балласте или осветительном элементе. Чтобы проверить работоспособность ЭПРА, из светильников удаляется линейная лампочка, электроды замыкаются, и подсоединяется обычная лампа накаливания. Если она загорелась, проблема не в пускорегулирующем аппарате.

В противном же случае нужно искать причину поломки внутри балласта. Чтобы определить неисправность люминесцентных светильников, необходимо «прозвонить» все элементы по очереди. Начинать следует с предохранителя. Если один из узлов схемы вышел из строя, необходимо заменить его аналогом. Параметры можно увидеть на сгоревшем элементе. Ремонт балласта для газоразрядных ламп предполагает необходимость использования навыков владения паяльником.

Если с предохранителем все в порядке, далее следует проверить на исправность конденсатор и диоды, которые установлены в непосредственной близости к нему. Напряжение конденсатора не должно быть ниже определенного порога (для разных элементов эта величина разнится). Если все элементы ПРА в рабочем состоянии, без видимых повреждений и прозвон также ничего не дал, осталось проверить обмотку дросселя.

В некоторых случаях проще купить новую лампу. Это целесообразно сделать в случае, когда стоимость отдельных элементов выше ожидаемого предела или при отсутствии достаточных навыков в процессе пайки.

Ремонт компактных люминесцентных ламп выполняется по сходному принципу: сначала разбирается корпус; проверяются нити накала, определяется причина поломки на плате ПРА. Часто встречаются ситуации, когда балласт полностью исправен, а нити накаливания перегорели. Починку лампы в этом случае произвести сложно. Если в доме имеется еще один сломанный источник света сходной модели, но с неповрежденным телом накала, можно совместить два изделия в одно.

Таким образом, ЭПРА представляет группу усовершенствованных аппаратов, обеспечивающих эффективную работу люминесцентных ламп. Если было замечено мерцание источника света или он и вовсе не включается, проверка балласта и его последующий ремонт позволят продлить срок службы лампочки.

Электронный балласт для ламп EB-2×36. Ремонт EB-2×36

электронный балласт для люминесцентных ламп схема 36w Установи приложение Aliexpress на телефон! Через приложение товары дешевле.

Want create site? Find Free WordPress Themes and plugins.

В данной статье описывается ремонт Электронного балласта EB-2×36 для люминесцентных ламп (Electronic Ballast EB-2×36).

Конечно вещь не такая дорогая чтобы отдавать её в ремонт, стоимость самого дешевого варианта примерно 350-400 рублей, но когда выходят из строя их пачками начинаешь задумываться о её ремонте. Поэтому есть смысл купить вещь немного по дороже 500-700 рублей.

Поступил балласт с неисправностью не включения ламп дневного света (люминесцентных ламп) установленных в плафоне две штуки по 36Вт каждая.

электронный балласт для люминесцентных ламп схема 36w

При тщательном визуальном осмотре горелых элементов не выявлено. Началась тотальная проверка ключевых элементов, в первую очередь это полупроводники (транзисторы и диоды).

электронный балласт для люминесцентных ламп схема 36w

Сразу скажу, что это не 100% схема данного электронного балласта, но схема очень похоже.

Symbol Parameter Value Unit

VCEV — Collector-Emitter Voltage 700 V

VCEO — Collector-Emitter Voltage (IB = 0) 400 V

VEBO — Emitter-Base Voltage (IC = 0) 9 V

IC — Collector Current 4 A

ICM — Collector Peak Current 8 A

IB — Base Current 2 A

IBM — Base Peak Current 4 A

Ptot — Total Power Dissipation at Tcase ≤ 25 o C 75 W

Tstg — Storage Temperature -65 to +150 o C

Tj — Max. Operating Junction Temperature 150 o C

В схеме эти транзисторы прозваниваются в короткую между базой и эмиттером, показывая несколько Ом. Это вызвано включение в схему элементов с низкоомным содержанием. Но для проверки всё равно были выпаены и проверены заново. Транзисторы MJE13005 оказались полностью исправные.

При последующем поиске неисправности удалось обнаружить неисправный элемент, им оказался динистор DB3. Проверить с помощью тестера его не реально. На его корпусе с помощью лупы была обнаружена небольшая трещина.

Стоимость DB3 примерно 15-20 руб.

Динистор Db3

На данный момент потребитель еще не оценил все достоинства усовершенствованного пускового механизма. Самая главная причина – это высокий уровень цен на оборудование этого типа. Ознакомиться с датчиком движения для включения света и советами как выбрать можно здесь.
На фотографии электронный балласт для люминесцентных ламп Принцип работы Весь принцип работы люминесцентных ламп с электронным балластом сводится к тому, что электрический ток проходит через выпрямитель, поступает на буферную зону конденсатора. После напряжение поступает на инвертор Микросхема срабатывает при уровне напряжения в 5,5 В. После того как напряжение в системе достигает 12 В, система входит в следующую фазу. Происходит предварительный нагрев. ЭБ нужен для того, чтобы не допустить неправильного срабатывания лампы. На третьем этапе происходит снижение частотной характеристики полумоста, при этом напряжение равняется 600 В. За 1,7 сек происходит поджиг. Если запуск прошел неправильно, то сгорает нить накаливания. Смотрите руководство как правильно паять паяльником здесь: В конце активируется упреждающее управление, регулирующее частоту переключения полумоста. ЭБ способствует поддержанию стабильного положения мощностного показателя. Устройство Непосредственно на плате ЭПРА располагается: Фильтр, который предотвращает распространение электромагнитных помех. Выпрямитель – преобразовывает постоянный электрический ток в переменный. Сглаживающий фильтр. Коррекция коэффициента мощности. Полумостной инвертор. Защита от перепадов напряжения. Дроссель. Виды и характеристики На данный момент можно использовать следующие варианты балласта для люминесцентных ламп: электронные балласты для трубчатых люминесцентных ламп – в данном случае электронный балласт дает возможность непрерывно работать и «производить» рассеянный свет, да и ко всему прочему, такое устройство обладает повышенной энергоэффективностью. На фото электронный балласт для трубчатых люминесцентных ламп активный балласт люминесцентных ламп — активна составляющая такого балласта предполагает равное распределение напряжения на всех участках. балласт для люминесцентных ламп Т8 Navigator – устройство обладает высокими техническими характеристиками. Поддерживает стабильную работу системы. Балласт для люминесцентных ламп Т8 Navigator на фото компактная люминесцентная лампа с электронным балластом – по техническим характеристикам ни чем не отличается от обычного, единственные различия – это компактные размеры. На снимке компактная люминесцентная лампа с электронным балластом интегральные контроллеры балластов люминесцентных ламп – этот вариант балласта предполагает интеграцию устройства непосредственно в схему. Единственный минус –устройство плохо поддается ремонту. Читайте обзор видов и характеристик стабилизатора напряжения 220В для дома на этой странице. Интегральные контроллеры балластов люминесцентных ламп на фотографии Схемы На рисунке представлена схема электронного балласта для 4 люминесцентных ламп Схемы включения люминесцентных ламп с электронных балластов можно разделить на 4 фазы: Включение Предварительный нагрев Поджиг Горение На данный момент весьма распространена схема электронного балласта для люминесцентных ламп с мощностью в 36w Также имеется еще один вариант баланса для включения люминесцентных ламп — индуктивный балласт. Его работа основана на электромагнитной индукции.
Схема включения люминесцентных ламп с индуктивным балластом Подключение Подключение люминесцентной лампы к электронному балласту на схеме Инструкция по подключению: Подготовить ЭБ и лампу. Вынуть старую начинку из светильника. Крепят коробку ЭБ. С одной стороны, ЭБ выполняют подключение к сети – два провода. На выходе от ЭБ провода подключаю к двум полюсам лампы. Подключают устройство в розетку. Включение двух люминесцентных ламп через балласт предполагает параллельное включение в цепь. Только так все осветительные элементы будут получать достаточное напряжение для равномерной работы устройств.
Схема включения двух люминесцентных ламп через балласт Смотрите видео-ролик об электронном балласте для люминесцентных ламп: Как проверить электронный балласт для люминесцентных ламп? На снимке прибор для проверки ламп, в том числе люминесцентных Чтобы выполнить проверку электронного баланса для люминесцентных ламп необходимо будет использовать специализированное оборудование. Если полученные показатели при измерении будут находиться в пределах нормы, то можно будет говорить о том, что оборудование работает исправно. Читайте как выбрать пластиковый кабель-канал.
На представленном ниже видео показано как можно заменить электронный балласт: Неисправности и ремонт Само собой, что любое оборудование рано или поздно может поломаться, или прийти в неисправность. Другими словами, любой прибор порой требует ремонта и дополнительного технического обслуживания.
На фотографии электронный балласт в разобранном виде К примеру, многие владельцы люминесцентной лампы с электронным балластом стакиваются с мерцанием. Это случается тогда, когда происходит перепад напряжения. Следовательно, необходимо выполнить замену одной из частей схемы. Если же при неисправности балласта для люминесцентных ламп пошел дым, то необходимо будет выполнить полную замену этого элемента, потому как дым говорит о перегорании компонента.
Ремонт электронного балласта на фото Стоимость электронного балласта для люминесцентных ламп В том случае, если необходимо приобрести электронный балласт для люминесцентных ламп, то необходимо обратиться в магазины, которые специализируются на электронике или осветительном оборудовании. Стоимость данного типа оборудования буде варьироваться в промежутке от 150 до 1200 рублей. Где купить электронный балласт для люминесцентных ламп? Где заказать в Москве: Интернет-магазин Rulight.ru г.Москва, ул.Константина Симонова, д.5 Контактный телефон: 8(495)7883548(многоканальный); Торговая компания Амперторг г.Москва, ул. Товарищеская дом 6 к.1 Контактный телефон: 8 (929) 576-45-15; Инернет-магазин Электропара г. Москва, ул. Докукина д.10 стр.10 Контактный телефон: 8 (495) 988-32-27. Где заказать в Санкт-Петербурге: Торговая компания ООО «Аква Трейс» г.Санкт-Петербург, ул. Бестужевская, д.10, офис 2604 (ТК «Бестужевский Двор») Контактный телефон: +7 (812) 493-35-30; Компания Снабэлектро, г.Санкт-Петербург ул. Ватутина дом 17, Лит.Б, Контактный телефон: 8 (812) 542-63-85; Компания Энергосберегающие технологии, г. Санкт-Петербург, 192148 Санкт-Петербург пр. Елизарова д.38 литер Р, Контактный телефон: +7-812-3654217. Видео Смотрите на видео описание электронного балласта мощностью 36 Вт: Так что получается, что этот вид ламп при использовании электронного баланса начинает работать в несколько раз лучше. Ко всему прочему, существенно снижается период отклика устройства и его время эксплуатации. Дек 9, 2015Татьяна Сумо

Люминесцентная лампа (ЛЛ) представляет собой стеклянную трубку, заполненную инертным газом (Ar, Ne, Kr) с добавлением небольшого количества ртути. На концах трубки имеются металлические электроды для подачи напряжения, электрическое поле которого приводит к пробою газа, возникновению тлеющего разряда и появлению электрического тока в цепи. Свечение газового разряда бледно-голубого оттенка, в видимом световом диапазоне очень слабое. Но в результате электрического разряда большая часть энергии переходит в невидимый, ультрафиолетовый диапазон, кванты которого, попадая в фосфорсодержащие составы (люминофорные покрытия) вызывают свечение в видимой области спектра. Меняя химический состав люминофора, получают различные цвета свечения: для ламп дневного света (ЛДС) разработаны различные оттенки белого цвета, а для освещения в декоративных целях можно выбрать лампы иного цвета. Изобретение и массовый выпуск люминесцентных ламп – это шаг вперед по сравнению с малоэффективными лампами накаливания. Для чего нужен балласт? Ток в газовом разряде растет лавинообразно, что приводит к резкому падению сопротивления. Для того чтобы электроды люминесцентной лампы не вышли из строя от перегрева, последовательно включается дополнительная нагрузка, ограничивающая величину тока, так называемый балластник. Иногда для его обозначения употребляют термин дроссель. Используются два вида балластников: электромагнитный и электронный. Электромагнитный балласт имеет классическую, трансформаторную комплектацию: медный провод, металлические пластины. В электронных балластниках (electronic ballast) применяются электронные компоненты: диоды, динисторы, транзисторы, микросхемы. Лампы накаливания Для первоначального поджига (пуска) разряда в лампе в электромагнитных устройствах дополнительно используется пусковое устройство – стартер. В электронном варианте балластника эта функция реализована в рамках единой электрической схемы. Устройство получается легким, компактным и объединяется единым термином – электронный пускорегулирующий аппарат (ЭПРА). Массовое применение ЭПРА для люминесцентных ламп обусловлено следующими достоинствами: эти аппараты компактны, имеют небольшой вес; лампы включаются быстро, но при этом плавно; отсутствие мерцания и шума от вибрации, поскольку ЭПРА работает на высокой частоте (десятки кГц) в отличие от электромагнитных, работающих от сетевого напряжения с частотой 50 Гц; снижением тепловых потерь; электронный балласт для люминесцентных ламп имеет значение коэффициента мощности до 0,95; наличие нескольких, проверенных видов защиты, которые повышают безопасность использования и продлевают срок службы. Схемы электронных балластов для люминесцентных ламп ЭПРА – это электронная плата, начиненная электронными компонентами. Принципиальная схема включения (Рис. 1) и один из вариантов схемы балласта (Рис. 2) приведены на рисунках. Люминесцентная лампа, С1 и С2 – конденсаторы Электрическая схема ЭПРА Электронные балласты могут иметь разное схемотехническое решение в зависимости от примененных комплектующих. Выпрямление напряжения производится диодами VD4–VD7 и далее фильтруется конденсатором C1. После подачи напряжения начинается зарядка конденсатора С4. При уровне 30 В пробивается динистор CD1 и открывается транзистор T2, затем включается в работу автогенератор на транзисторах T1, T2 и трансформаторе TR1. Резонансная частота последовательного контура из конденсаторов С2, С3, дросселя L1 и генератора близки по величине (45–50 кГц). Режим резонанса необходим для устойчивой работы схемы. Когда напряжение на конденсаторе С3 достигнет величины пуска, лампа зажигается. При этом снижается регулирующая частота генератора и напряжения, а дроссель ограничивает ток. Фото внутреннего устройства ЭПРА Фото типового устройства ЭПРА Ремонт ЭПРА
В случае отсутствия возможности быстрой замены вышедшего из строя ЭПРА можно попытаться отремонтировать балластник самостоятельно. Для этого выбираем следующую последовательность действий для устранения неисправности: для начала проверяется целостность предохранителя. Эта поломка часто встречается из-за перегрузки (перенапряжения) в сети 220 вольт; далее производится визуальный осмотр электронных компонентов: диодов, резисторов, транзисторов, конденсаторов, трансформаторов, дросселей; в случае обнаружения характерного почернения детали или платы ремонт производится с помощью замены на исправный элемент. Как проверить своими руками неисправный диод или транзистор, имея в наличии обычный мультиметр, хорошо известно любому пользователю с техническим образованием; может оказаться, что стоимость деталей для замены будет выше или сопоставима со стоимостью нового ЭПРА. В таком случае лучше не тратить время на ремонт, а подобрать близкую по параметрам замену. ЭПРА для компактных ЛДС Сравнительно недавно стали широко использоваться в быту люминесцентные энергосберегающие лампы, адаптированные под стандартные патроны для простых ламп накаливания – Е27, Е14, Е40. В этих устройствах электронные балласты находятся внутри патрона, поэтому ремонт этих ЭПРА теоретически возможен, но на практике проще купить новую лампу. На фото показан пример такой лампы марки OSRAM, мощностью 21 ватт. Следует заметить, что в настоящее время позиции этой инновационной технологии постепенно занимают аналогичные лампы со светодиодными источниками. Полупроводниковая технология, непрерывно совершенствуясь, позволяет быстрыми темпами достигнуть цены на ЛДС, стоимость которых остается практически неизменной. Лампа OSRAM с цоколем E27 Люминесцентные лампы T8 Лампы T8 имеют диаметр стеклянной колбы 26 мм. Широко используемые лампы T10 и T12 имеют диаметры 31,7 и 38 мм соответственно. Для светильников обычно применяют ЛДС мощностью 18 Вт. Лампы T8 не теряют работоспособности при скачках питающего напряжения, но при понижении напряжения более чем на 10% зажигание лампы не гарантируется. Температура окружающего воздуха также влияет на надежность работы ЛДС T8. При минусовых температурах снижается световой поток, и могут происходить сбои в зажигании ламп. Лампы T8 имеют срок службы от 9 000 до 12 000 часов. Как изготовить светильник своими руками? Сделать простейший светильник из двух ламп можно следующим образом: выбираем подходящие по цветовой температуре (оттенку белого цвета) лампы по 36 Вт; изготавливаем корпус из материала, который не воспламенится. Можно задействовать корпус от старого светильника. Подбираем ЭПРА под данную мощность. На маркировке должно быть обозначение 2 х 36; подбираем к лампам 4 патрона с маркировкой G13 (зазор между электродами составляет 13 мм), монтажный провод и саморезы; патроны необходимо закрепить на корпусе; место установки ЭПРА выбирают из соображения минимизации нагрева от работающих ламп; патроны подключаются к цоколям ЛДС; для предохранения ламп от механического воздействия желательно установить прозрачный или матовый защитный колпак; светильник закрепляется на потолке и подключается к сети питания 220 В. Простейший светильник из двух ламп

Несмотря на развитие технологий, обычные трубчатые лампы дневного света (ЛДС) до сих пор пользуются популярностью. Но если конструкция самих приборов так и остается практически неизменной, схемы подключения люминесцентных ламп постоянно меняются и дорабатываются. Взамен старым добрым дросселям приходят электронные балласты, а благодаря народной смекалке некоторые конструкции великолепно работают даже со сгоревшими спиралями запуска. Как устроена и работает ЛДС Конструктивно прибор представляет собой герметичную колбу, заполненную инертным газом и парами ртути. Внутренняя поверхность колбы покрыта люминофором, а в торцы ее впаяны электроды. При подаче напряжения на электроды, между ними возникает тлеющий разряд, создающий невидимое ультрафиолетовое излучение. Это излучение воздействует на люминофор, заставляя его светиться. Схема люминесцентной лампы Как правило, форма колбы – трубчатая, но для улучшения эргономичности устройства трубку изгибают, придавая ей самую различную конфигурацию. Все это ЛДС, работающие на одном принципе. Для нормальной работы люминесцентного светильника необходимо выполнить два условия: Обеспечить начальный пробой межэлектродного промежутка (запуск). Стабилизировать ток через лампочку, чтобы тлеющий разряд не перешел в дуговой (работа). Пуск лампы В обычных условиях питающего напряжения недостаточно для электрического пробоя межэлектродного промежутка, поэтому пуск ЛДС возможет только с помощью дополнительных мер – разогрева электродов для начала термоэлектронной эмиссии или повышения напряжения питания до значений, достаточных для создания разряда. До недавнего времени преимущественно использовался первый метод, для чего электроды делались (и делаются) в виде спиралей, наподобие тех, что стоят в обычных лампочках накаливания. В момент включения на спирали при помощи автоматических устройств (стартеров) подается напряжение, электроды разогреваются, обеспечивая зажигание светильника. После пуска системы стартер отключается и в процессе дальнейшей работы не участвует. Стартеры для пуска ЛДС на различные напряжения Позже начали появляться схемотехнические решения, не разогревающие электроды, а подающие на них повышенное напряжение. После пробоя межэлектродного промежутка напряжение автоматически снижается до номинального, и светильник переходит в рабочий режим. Для того чтобы ЛДС можно было использовать с любыми типами пусковых устройств, все они и по сей день выполняются с электродами в виде спиралей накаливания, имеющих по два вывода. Поддержание рабочего режима Если ЛДС напрямую включить в розетку, то начавшийся после поджига тлеющий разряд тут же перейдет в дуговой, поскольку ионизированный межэлектродный промежуток имеет очень малое сопротивление. Чтобы избежать этой ситуации, ток через прибор ограничивается специальными устройствами – балластами. Разделяются балласты на два типа: Электромагнитные (дроссельные). Электронные. Работа электромагнитных пускорегулирующих аппаратов (ЭмПРА) основана на принципе электромагнитной индукции, а сами они представляют собой дроссели – катушки, намотанные на незамкнутом железном сердечнике. Такая конструкция обладает индуктивным сопротивлением переменному току, которое тем больше, чем выше индуктивность катушки. Дроссели различаются по мощности и рабочему напряжению, которые должны равняться мощности и напряжению используемой лампы. Электромагнитные дроссели (балласты) для ЛДС мощностью 58 (вверху) и 18 Вт. Электронные пускорегулирующие аппараты (ЭПРА) выполняют ту же функцию, что и электромагнитные, но ограничивают ток при помощи электронной схемы: Электронное пускорегулирующее устройство для люминесцентной лампы Преимущества балластов разных типов Прежде чем выбрать и, тем более, купить балласт того или иного типа, имеет смысл разобраться в их отличиях друг от друга. К преимуществам ЭмПРА можно отнести: умеренную стоимость; высокую надежность; возможность подключения двух ламп половинной мощности. Электронные балласты появились много позже своих дроссельных собратьев, а значит, и список преимуществ у них больше: небольшие габариты и вес; при той же светоотдаче энергопотребление на 20% ниже, чем у ЭмПРА; почти не нагреваются; работают абсолютно бесшумно (ЭмПРА нередко гудит); отсутствие мерцания лампы с частотой сети; срок службы лампы на 50% выше, чем с дросселем; лампа запускается мгновенно, без «мигания». Но за все эти преимущества, естественно, придется заплатить – стоимость электронного устройства ощутимо выше, чем цена дроссельного, а надежность, увы, пока еще ниже. Кроме того, если мощность электронного балласта ниже мощности лампы, то в отличие от электромагнитного он просто сгорит. Включение ламп дневного света Хотя люминесцентную лампу нельзя просто воткнуть в розетку, запустить ее совсем несложно и под силу каждому, кто знаком с электрикой. Для этого достаточно обзавестись соответствующим пускорегулирующим устройством того или иного типа и собрать несложную схему. Использование электромагнитного дросселя и стартера Это, пожалуй, самый простой и бюджетный вариант. Для создания люминесцентного светильника понадобится лампа дневного света, электромагнитный балласт (дроссель), мощность которого соответствует мощности лампы, и стартер с рабочим напряжением 220 В (указано на корпусе). Схема подключения дросселя для люминесцентных ламп будет выглядеть так: Схема подключения люминесцентной лампы с дросселем. Работает схема следующим образом. При подключении светильника к сети лампа не горит – напряжения на ее электродах недостаточно для зажигания. Но одновременно это же напряжение поступает через спирали лампы на стартер, представляющий собой газоразрядную лампу со встроенной биметаллической пластиной. Возникающий на электродах стартера тлеющий разряд разогревает биметаллическую пластину, но этого тока пока недостаточно для разогрева спиралей ЛДС. Нагревшаяся пластина замыкает стартер накоротко, и возросший ток разогревает спирали лампы дневного света. Через некоторое время биметаллическая пластина остывает и разрывает цепь подогрева. За счет обратной самоиндукции дросселя на уже разогретых катодах ЛДС происходит бросок напряжения, поджигающий лампу. Благодаря возникшему тлеющему разряду напряжения на стартере уже не хватает для его срабатывания, и в дальнейшей работе он не участвует. Дроссель же ограничивает ток через колбу ЛДС, обеспечивая ей номинальный рабочий ток. При необходимости один дроссель может питать и две лампочки, но здесь необходимо выполнить три условия: Мощность лампочек должна быть одинаковой. Мощность дросселя должна равняться суммарной мощности лампочек. Напряжение срабатывания стартеров (оно указано на корпусе устройства) должно быть 127 В. Схема люминесцентного светильника с двумя лампами Обратите внимание: соединение ламп должно быть последовательным и ни в коем случае не параллельным. Работа люминесцентного светильника с ЭПРА Если вы будете использовать в своем светильнике электронный балласт, то стартер не понадобится (он входит в ЭмПРА, хотя и выполнен отдельным узлом). Дело в том, что для пуска осветителя электронный балласт использует не подогрев спирали, а высокое напряжение (до киловольта), обеспечивающее разряд между электродами. Единственное условие, которое нужно соблюдать – мощность балласта должна равняться номинальной мощности осветителя. Схема же такого светильника будет совсем простая: Включение электронного балласта для люминесцентных ламп (схема 36w) Поскольку обычные ЭПРА не могут работать в двухламповых светильниках, выпускаются двухканальные приборы. По сути, это два обычных ЭПР в одном корпусе. Схема светильника 2×36 с электронным балластом. Приведенная схема не является единственной и зависит как от типа пускорегулирующего устройства, так и от производителя. Обычно она наносится прямо на корпус прибора: Схема подключения и мощность осветителей(2х36) нередко наносится на корпус балласта. Включение приборов со сгоревшими спиралями Если в вашей кладовке покрываются пылью сгоревшие люминесцентные лампы, которые вы никак не соберетесь утилизировать, не торопитесь их выбрасывать. Такие устройства смогут послужить еще, если вы умеете держать в руках паяльник. Для реализации этой идеи понадобятся два абсолютно недефицитных диода и два конденсатора: Схема включения ЛДС со сгоревшими спиралями Как работает такая схема? Мост, собранный на диодах VD1, VD2, С1, С2 представляет собой простейший умножитель, увеличивающий напряжение вдвое. Для того чтобы при 400 – 450 В начался тлеющий разряд, совсем необязательно разогревать электроды. Как только светильник запустится, балласт L1 ограничит ток через лампу до рабочего уровня. Если вы решили повторить эту схему, то обратите внимание на то, что конденсаторы должны быть бумажными неполярными, а диоды рассчитаны на обратное напряжение не ниже 300 В. В качестве балласта используется обычный дроссель, мощность которого равна мощности светильника. В случае если с дросселем совсем туго, но освещение нужно организовать любой ценой, можно в качестве балласта применить обычную лампочку накаливания, мощность которой равна мощности ЛДС. Но такая замена сильно снизит КПД всего устройства, а потому не всегда оправдана. Следующий вариант светильника пригодится на тот случай, если в вашем распоряжении оказалось две однотипные ЛДС, у которых сгорело по одной спирали (обычно так и бывает). Для его реализации вам понадобятся дроссель, имеющий мощность вдвое большую, чем номинал каждой лампочки, и стандартный стартер на 220 В: Включение двух ЛДС со сгоревшими спиралями Здесь стартер подогревает по одной спирали в каждой лампе, которые включены последовательно. Этого вполне достаточно для пуска большинства газоразрядных приборов. Есть и еще одно применение такой схемы. Она удобна в том случае, если у вас нет двух дросселей на нужную мощность, зато есть один на удвоенную. Вполне очевидно, что в этой схеме будут работать и ЛДС с исправными спиралями. Энергосберегающая лампочка – та же ЛДС Практически каждый видел, а многие и пользовались так называемыми энергосберегающими лампочками, которые вворачиваются в обычный осветительный патрон. Сходство их с люминесцентными просто поражает – та же трубочка, только маленькая и скрученная. Это тоже ЛДС, только компактнее и удобнее. Сходство это не случайно, поскольку «энергосберегайка» — обычная ЛДС с электронным пускорегулирующим устройством. Убедиться в этом можно просто разобрав вышедшую из строя «сберегайку»: Разобранная энергосберегающая лампочка Даже на фото отлично видно, что колба имеет 4 вывода – по 2 на каждую спираль – и подключается хоть и к компактному, но самому обычному ЭПРА. В том, что пускорегулирующее устройство самое обычное, вы можете даже убедиться экспериментально. Возьмите обычную трубчатую ЛДС с той же мощностью, что указана на цоколе «энергосберегайки», и подключите ее вместо родной. Ни лампа, ни электронный балласт даже не заметят подмены. Такая гибридная сборка может быть полезна, если энергосберегающая лампочка разбилась или в ней сгорели спирали. Зачем же выбрасывать вполне исправную электронику, когда трубчатая ЛДС стоит совсем недорого? Трубчатая газоразрядная лампа, включенная через балласт «энергосберегайки». Если разобраться в разных схемах подключения, можно сделать все самостоятельно, сэкономив и время, и средства. Автор: admin Оцените статью: (0 голосов, среднее: 0 из 5)